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Linking Terrorist Network Structure to Lethality:
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Abstract— Without measures of the lethality of terrorist1

networks, it is very difficult to assess if capturing or killing a2

terrorist is effective. We present the predictive lethality analysis of3

terrorist organization (PLATO) algorithm, which merges machine4

learning with techniques from graph theory and social network5

analysis to predict the number of attacks that a terrorist network6

will carry out based on a network structure alone. We show that7

PLATO is highly accurate on two novel datasets, which cover Al8

Qaeda (AQ) and the Islamic State (ISIS). Using both machine9

learning and statistical methods, we show that the most significant10

macrofeatures for predicting AQ’s lethality are related to their11

public communications (PCs) and logistical subnetworks, while12

the leadership and operational subnetworks are most impactful13

for predicting ISISs lethality. Across both groups, the average14

degree and the diameters of the strongly connected components15

(SCCs) within these networks are strongly linked with lethality.16

Index Terms— Counterterrorism, machine learning, terrorism.17

I. INTRODUCTION18

THOUGH terrorism has been a major concern since the19

1970s, the events of 11 September 2001 saw the emer-20

gence of the “global war on terror.” Since then, billions of21

dollars and thousands of lives of military personnel, and even22

more lives of civilians, have been expended in this war.23

Counterterrorism efforts over the last 20 years have included24

a number of instruments aimed at targeting the lethality of ter-25

ror networks. These include offering rewards for information26
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leading to the capture and/or conviction of certain individuals, 27

as well as operations to remove terrorists from their networks 28

(e.g., the operation to capture Osama bin Laden). 29

When a terror network is targeted in this way, the net- 30

work reshapes itself [1], [2], and so when considering the 31

removal of a terrorist, such as Osama bin Laden from the 32

Al Qaeda (AQ) network, it is important to be able to predict 33

the lethality of the resulting network (after the removal). 34

In this article, we propose methods to correlate the structure 35

of a network with its lethality. While several definitions of 36

lethality are possible, we define lethality as the estimated 37

number of attacks carried out by a future terror network after 38

reshaping. We develop a novel algorithm called predictive 39

lethality analysis of terrorist organization (PLATO) for this 40

purpose. When a counterterrorism agency considers removing 41

a terrorist, it can use a system, such as shaping terrorist 42

organizational network efficiency (STONE) [1], [2], to identify 43

the new possible networks that result (and their associated 44

probabilities) and then use a lethality model, such as the one 45

proposed in this article, to identify the expected lethality of 46

the resulting network. 47

The first effort at building such a lethality model was in [3] 48

who proposed removing critical nodes in a network using a 49

node centrality measure. But, they did not link networks to 50

lethality, and because their data were cross sectional, they 51

were unable to assess the impact of their method on lethality, 52

as there were no “before removal” and “after removal” states 53

of the network. Horowitz and Potter [4] find a correlation 54

between the connections between groups and lethality, but 55

also rely on cross-sectional data. Others have analyzed terror 56

networks from the point of view of cell structure [5], their abil- 57

ity to communicate while remaining covert [6], [7], and how 58

they can be destabilized [8]. STONE [1], [2] developed four 59

simple lethality measures, which were tested on small datasets, 60

along with sophisticated methods to identify who to remove 61

from the network. To effectively forecast the lethality of terror 62

groups and to evaluate how various policy interventions impact 63

a terrorist network’s lethality, we need features that involve the 64

group’s network structure, which are longitudinal (vary over 65

time) and a model that can accurately map these features to 66

group violence. 67

Our contributions fall into three categories. First, we lever- 68

age two novel longitudinal network datasets detailing the rela- 69

tionships between members of two prominent terror groups, 70

AQ and the Islamic State (ISIS). Our AQ time-series network 71

dataset consists of 16 years of data comprising 139 networks. 72
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Our ISIS dataset consists of 49 networks spanning four years.73

To the best of our knowledge, these are the most extensive74

datasets showing the evolution of these two networks over75

time. We define a set of network-related features, some of76

which are used for the first time in terrorist network analysis.77

These features are based on the functional roles played by78

individual terrorists and the subnetworks induced by different79

functional roles using concepts from graph theory and social80

network analysis.81

Second, we devise new algorithms to predictively link82

a terrorist network structure to future attacks. Our PLATO83

algorithm is an ensemble that uses a mix of regression84

methods, feature selection methods, and time lags to solve the85

following problem. Suppose a new network Nt+1 comes into86

existence at the beginning of a time period It+1. We would87

like to predict the lethality of Nt+1 as soon as it comes into88

existence. PLATO is initially invoked with a set of features,89

some of which are eliminated by the algorithm. Using past90

ground-truth data up to and before time period It , PLATO91

identifies the best parameters for an ensemble of regressors92

and uses late fusion to learn the optimal weights. Thus,93

PLATO uses a careful mix of feature engineering, subnetwork94

selection, feature selection, and regression, together with an95

ensemble model for generating predictions. We show that96

all three versions of PLATO significantly beat out a strong97

regression baseline in terms of predictive accuracy measured98

by Pearson correlation coefficient (PCC).99

Third, we derive a new understanding of the link between100

the lethality of AQ and ISIS and their network structure.101

Because many features vary slightly, we introduce the102

concept of a macrofeature, which is an aggregation of similar103

features into one. We study which macrofeatures are most104

closely linked to AQ and ISIS’s lethality. Surprisingly, the105

subnetwork of AQ involved in public communications (PCs)106

contributes to five of the most significant macrofeatures,107

while the logistical subnetwork of AQ is involved in four.108

In contrast, in the case of ISIS the top-ten most significant109

features are dominated by the leadership subnetwork (six110

of ten), followed by the operational subnetwork (two of111

ten). Moreover, in the case of AQ, the average degrees112

of nodes in various subnetworks are strongly linked with113

lethality, as are properties associated with the diameters of114

the strongly connected components (SCCs), as well as other115

centrality measures. This is also mirrored in the case of ISIS116

where degrees, centrality measures, and diameters of strongly117

connected subnetworks play important roles.118

II. NETWORK AND FEATURES119

A terrorist network N = (V , E, π, cat) consists of four120

parts: a set V of nodes (terrorists), a set E of edges121

linking those nodes (relationships between terrorists), and122

two functions π and cat. The function cat assigns a set of123

functional categories to each terrorist. The set of possible124

functional categories is C = {operational, financial,125

logistical, R&T, PC, leadership}, where R&T and126

PCs stand for recruitment and training and public communi-127

cations, respectively. For instance, during the March–August128

2015 time period, Bana Fanaye, one of the leaders of Boko129

Fig. 1. AQ network during September–October 2014. This network has
48 nodes and 58 edges in total. The different node shapes denote the functional
categories, and the colors denote the individual’s state during that time frame.
Node size is proportional to the individual’s rank.

Haram, had two associated functional categories: logistical 130

and leadership. The function π assigns a value for each 131

property that a terrorist (node) might have. For instance, rank 132

is a property on a 0 (lowest rank) to 10 (top leader) scale. 133

Thus, we might have rank(Osama bin Laden, 10), signifying 134

that bin Laden had a value of 10 for the rank property in 135

a given network. Nodes may have other properties, such 136

as dead, jail, and alive (and free). Another important node 137

property we consider is role (e.g., with values, such as trainer, 138

bomb maker, and so on). Every node is required to have 139

values for the rank and role properties, but other properties 140

may or may not have associated values. 141

Formally, a terrorist’s category of a terrorist can be included 142

within π . We treat cat separately as our analysis focuses 143

on these categories. The properties in π may be positively 144

or negatively correlated with cat. A bomb maker (role) is 145

rarely the leader (negative correlation), but is often in the 146

operational category (positive correlation). This does not 147

affect our analysis. 148

As terrorist networks evolve over time, our data for each 149

of the AQ and ISIS networks have an associated set of T 150

time intervals I0, I1, . . . , IT . We use Nt = 〈Vt , Et , πt , catt 〉 to 151

denote the snapshot of a network at the time interval It (with 152

t ∈ T ). An example of network from our dataset for the time 153

interval September–October 2014 is shown in Fig. 1. For each 154

network Nt , which existed during the time interval It , we also 155

collected At , the number of attacks carried out by the terror 156

network during time It . 157

We built such tiime series of networks for AQ from Novem- 158

ber 2001 to January 2017 and for ISIS from December 159

2012 to January 2017. The ISIS dataset consists of 49 time- 160

indexed networks, with an average time interval (i.e., the 161

period of validity of time-indexed networks) of approximately 162
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TABLE I

WbFs. DEFINITIONS 1–3 CAN BE FOUND IN APPENDIX A-A

one month. The average number of members per network163

is 74.17, with 10 as the min and 110 as the max. The164

number of relationships in the ISIS dataset ranged from 12 to165

642 across the networks, with an average of 437.11. The AQ166

dataset consists of 139 time-indexed networks with an average167

time interval of between three and four months. The average168

number of members per network is 39.16, with a min of169

2 and a max of 159. The average number of relationships per170

network was 113.90, with a minimum of 26 and a maximum171

of 808. We designed a codebook detailing the data collection172

procedures involving more than 20 social scientists to code the173

data. The data were collected from a variety of open-source174

materials in multiple languages, including English, Arabic,175

French, and Spanish. The coders mainly relied on primary176

sources, including jihadist propaganda and social media posts,177

publicly available intercepted documents produced by these178

organizations, and declassified intelligence reports. Examples179

of primary sources we relied upon include statements issued180

by the media arm of AQ in the Islamic Maghreb (Al-Andalus181

Media Foundation), first-hand accounts of troop movements182

in Idlib Governorate posted to Twitter in December 2015, and183

U.S. Department of State announcements of additions to its184

list of designated terrorists. The coders also consulted sec-185

ondary sources, including books, journal articles, newspapers186

and news sites, and other publications. Coders factored in187

the credibility and possible biases of each source consulted188

and sought to corroborate all factual claims across multiple189

independent sources. The coding process included meetings190

to harmonize the data via discussion when coders coded data191

differently. Values for some missing properties were filled192

in using a set of assumptions. Missing start/end dates of a193

terrorist’s membership were manually set to be consistent with194

the known relationships of the terrorists. If a relationship start195

date was unknown, we set the start date of the relationship to196

the start date of one of the two members who next joined the197

network. A similar adjustment was made for relationship end198

dates. We remove isolated vertices in the network. In total,199

the number of vertices and relationships filled in by such200

assumptions is 14.6% and 32.05%, respectively, for the ISIS201

and AQ datasets.202

Features: We developed a feature vector for each network203

Nt . We use fv(Nt , SF) to denote the feature vector extracted204

for Nt for a given set SF of features. We developed a total of205

3738 features consisting of 534 basic features and 3204 time-206

lagged variants of the basic features. Because our data detail207

the category of each individual, and their rank and role within 208

the network, we can construct a variety of novel features. 209

We are able to treat terror groups, not as unitary actors, but 210

rather as collections of individuals who exhibit considerable 211

heterogeneity and dynamics over time. Our ability to construct 212

a range of novel network features can help guide future work 213

aiming to predict and understand the behavior of terror groups. 214

Our basic features include weight-based features (WbFs), 215

restricted network-based features (RbFs), group-based features 216

(GbFs), and cluster-based features (CbFs). WbFs assign a 217

weight to each node (e.g., role, a centrality score, and a 218

combination of rank and centrality score) and then aggre- 219

gate them together for the network in different ways (e.g., 220

mean/median of these node weights with respect to all nodes; 221

mean/median/expected value of these node weights with 222

respect to nodes belonging to a given functional category). 223

RbFs look at the characteristics of the induced subnetwork that 224

results when only certain functional categories are considered, 225

e.g., operational. It includes features, such as the number 226

of k-SCCs of size k or more with varying k, the average 227

diameter of k-SCCs, the average standard deviation of k-SCCs, 228

the density of various subnetworks induced by restricting 229

to specific functional categories, and more. GbFs look at 230

sets of nodes belonging to a given functional category (e.g., 231

all operational nodes) and compute the group PageR- 232

ank (GPR; which we define), group betweenness centrality 233

(GBC) [9], and various combinations of such metrics. CbFs 234

include global clustering coefficients for both the directed and 235

undirected versions of the networks, different kinds of cluster- 236

ing coefficients obtained by focusing on specific subnetworks. 237

Tables I–IV summarize the basic features that we introduced. 238

Every row of one of these tables contains the name of a class of 239

features, together with a brief description and an example of a 240

concrete feature from that class. The formal definitions of the 241

features can be found in Appendix A. For the sake of brevity, 242

we use φi (t,F) with i ∈ [1, 21] and F ⊆ C to refer to the 243

different kinds of features whose name and description are 244

provided in the table. In most cases, F is a singleton—so 245

we simply write φi(t, f ) with f ∈ C. Some features take an 246

additional parameter, such as a natural number k, as input—so 247

we may write φi(t, f, k). Time-lagged variants of these four 248

types of basic features are also defined, because, for instance, 249

the lethality of a network may depend upon the values of these 250

basic features from past networks. Definitions can be found in 251

Appendix A. 252
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TABLE II

FEATURES BASED ON RESTRICTIONS OF THE NETWORK. DEFINITIONS 4–13 CAN BE FOUND IN APPENDIX A-B

TABLE III

GbFs. DEFINITIONS 14–17 CAN BE FOUND IN APPENDIX A-C

TABLE IV

CbFs. DEFINITIONS 18–21 CAN BE FOUND IN APPENDIX A-D

III. PLATO ALGORITHM253

Algorithm 1 shows our PLATO algorithm to predict the254

number of attacks that a terrorist group will carry out at the255

next time point. As mentioned earlier, our data consist of a 256

time-series of networks N1,N2, . . . Each network N j is in 257

existence during an associated time interval I j . Without loss of 258
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Algorithm 1 PLATO With Ensemble and Late Fusion
Input: Set of features SF ; Training dataset T Sx =
{〈 f v(N1, SF), A1+x 〉, . . . , 〈 f v(Nt−x , SF), At 〉}; New net-
work Nt+1; Ensemble of n Regression Model types E =
{RM1, . . . , RMn}; Feature window size wF < t−x , Train-
ing window size wT ≤ wF ; Feature selection approach F A;
Number of top features k.

Output: Estimated number of attacks Ât+1+x for Nt+1+x ;
PCC score.

1: groundTruth = 〈A1+x , . . . , At 〉;
2: prediction[ j ] = ∅, result[ j ] = ⊥, 1 ≤ j ≤ n;
3: i = 0;
4: for SWi = {〈 f v(N�, SF), A�+x 〉 | � ∈ [i + 1, i + wF ]}

do
5: if F A = I FS then
6: SFi j = IterativeFeatureSearch(SWi , E, SF, wT );
7: else
8: SFi j = Select top-k features from SF using F A for

SWi ;
9: end if

10: T W = {〈 f v(Nl , SF), Al+x 〉 | l ∈ [i+1+wF −wT , i+
wF ]}

11: for each regressor type RM j ∈ E in parallel do
12: T Wi j = {〈 f v(Nl , SFi j ), Al+x 〉|〈 f v(Nl , SF), Al+x 〉 ∈

T W }
13: RM∗j = Select best parameter setting for RM j on

T Wi j ;
14: if i + wF < t − x then
15: result[ j ] = Apply RM∗j to f v(Ni+wF+1, SFi j );
16: prediction[ j ] = prediction[ j ] ⊕ j result[ j ];
17: i = i + 1;
18: else
19: result[ j ] = Apply RM∗j to f v(Nt+1, SFi );
20: break;
21: end if
22: end for
23: end for
24: W = argmax

Ws.t .�n
i=1 W [i]=1

PCC(�n
j=1W [ j ] · prediction[ j ],

groundTruth);
25: score = PCC(�n

j=1W [ j ] · prediction[ j ],
groundTruth);

26: resultl f = �n
j=1W [ j ] · result[ j ];

27: return resultl f , score

generality, we assume that the interval I j precedes the interval259

I j+1 for all j .260

Suppose the network in existence now is network Nt ; i.e.,261

networks N1, . . . ,Nt−1 are from the past, and the current262

network is Nt . A new network Nt+1 comes into effect when263

a change occurs (e.g., a terrorist is captured or killed, some264

relationships between terrorists change, we have information265

about some new terrorists, and so on). The idea is that PLATO266

will be used to predict the lethality of a new network Nt+1267

as soon as the new network comes into being. For instance,268

the AQ network Ni changed on May 2011 when Osama bin269

Laden was killed. PLATO could be applied immediately on 270

the new network Ni+1 resulting from the change of Osama 271

bin Laden’s status from “alive (and free)” to “dead.” Though 272

the nodes and edges in this new network may be the same 273

as in the previous one, it is considered different, because a 274

property of one node (bin Laden) has changed. The ability to 275

produce a new predictions when there are structural changes 276

in the network, new edges or nodes are added, or simply a 277

change in roles within the network, and a lower ranked leader 278

is promoted, opens new possibilities for making more dynamic 279

forecasts of terror group lethality. 280

Suppose the networks in {N1, . . . , Nt } are known, 281

Nt+1 is the new network, and we are interested 282

in estimating At+1+x , the number of attacks in the 283

future network Nt+1+x . PLATO takes a training set 284

TSx = {〈fv(N1, SF), A1+x 〉, . . . , 〈fv(Nt−x , SF), At 〉} 285

consisting of feature vectors of the first t − x networks 286

we have, along with the corresponding numbers of attacks 287

carried out 1 + x networks in the future (but never going 288

beyond network Nt ), and tries to predict how many attacks 289

the network Nt+1+x will carry out. One challenge in making 290

this prediction is that we do not know how many and which 291

past networks in {N1, . . . , Nt } should be considered. The 292

reason is that we do not know which of the networks in 293

{N1, . . . , Nt } provides an important signal for predicting 294

Nt+1+x . For instance, does the number of attacks carried out 295

by Nt+1 depend on just Nt ? On just Nt−2,Nt−1 and Nt ? 296

Additionally, we do not know which subset of features are 297

relevant. 298

PLATO handles these challenges using a sliding window 299

(Line 4) of wF networks from the training set TSx in each iter- 300

ation of the main for loop (Lines 4–23). For each sliding win- 301

dow SWi , it iteratively selects relevant features (Lines 5–9). 302

Feature selection can be done using any method—in our 303

experiments, we consider principal component analysis (PCA) 304

and mutual information (MI) as well as a feature selection 305

approach that we defined called iterative feature search (IFS) 306

(Line 6). The best features for each regressor-type RM j are 307

stored in the set SFi j . In the case of PCA and MI, these 308

sets of features are the same for each regressor. In the case 309

of IFS, they can change as IFS selects the best features by 310

considering the regression model type used. More details on 311

IFS are provided at the end of this section. 312

PLATO then creates a training set TW consisting of the 313

feature vectors/number of attacks of the last wT networks from 314

TSx in SWi (Line 10). In Lines 11–22, PLATO trains each 315

regression model type [e.g., lasso versus ridge versus support 316

vector regression (SVR)] in parallel and does hyperparameter 317

optimization to create the best regressors RM∗j for each 318

regressor type (Line 13). Each regression model type in the 319

ensemble is trained using the feature vectors TWi j (i.e., the 320

training set restricted to the selected features). If the sliding 321

window is not the last, i.e., there are still networks that have 322

not been considered in the training dataset, the regression 323

model RM∗j is used to predict the number of attacks Ai+wF+1+x 324

using the network following the sliding window (Line 15), 325

and the prediction list is updated with this new prediction 326

(Line 16). Otherwise, RM∗j is applied to the test network Nt+1, 327
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Fig. 2. Execution of PLATO. (a) First iteration. (b) Second iteration. (c) Last
iteration.

thus making a prediction of At+1+x (Line 19). In particular,328

in Line 16, the best j th regression model type generates a329

prediction, and the ⊕ j operator concatenates the vector of330

results (prediction vector) generated by the j th regression331

model type. The ⊕ j reflects this concatenation operator.332

When we get to Line 24, the situation is as follows: the333

best regressor RM∗j for each regressor-type RM j has made334

the same number of predictions, each stored in prediction[ j ]335

(whose size is the same as that of groundTruth). PLATO tries336

to find an assignment of weights W (such that the weights337

sum to 1) for the regressors in the ensemble, so that PCC338

of the linear combination of the predictions made by the339

ensemble and the ground truth is the highest possible. The340

weights are discovered using a grid search that considers all341

combinations of weights in the increments of 0.2. PLATO342

eventually returns the PCC corresponding to the best weight343

assignment (Line 25) along with the predicted number of344

attacks Ât+1+x for network Nt+1+x (Line 26).345

Fig. 2 illustrates how PLATO works when wF = 3,346

wT = 2, and x = 1, and the ensemble consists of just347

one regression model, showing the first two iterations of the348

algorithm [Fig. 2(a) and (b)] and the last one [Fig. 2(c)] on349

a toy example. At each iteration, a subset SFi j of features350

(highlighted in green) is selected and used by the regression351

model to make a prediction of the number of attacks carried352

out one time point ahead.353

Selecting Features via Iterative Search: Computing the set354

of best features is an integral part of PLATO. To do this,355

we defined a bottom-up greedy algorithm called iterated fea-356

ture search (Function 1) that iteratively selects features as long357

as predictive accuracy increases. Intuitively, a set of features358

are good if they allow us to accurately predict the number359

of attacks occurring in the future. To this end, Function 1360

considers the regression model type during its execution and,361

for each model RM j , keeps track (via the BestSet[ j ] vector)362

of the features that allow RM j to generate the highest PCC363

score. The latter is found upon calling the findPath subroutine,364

which takes as input, a set of features SF, a regression model-365

type RM j , a set of features SFb, and PCC Score obtained366

by RM j using the features in SFb, and then extends SFb as367

much as possible (i.e., till Score increases). Initially, the set368

of features is empty, and the score is set to 0 (Line 3). The369

set is then updated by exploring all unexplored features in SF370

and adding to it the feature fb that, together with those in371

SFb, generates the highest score (Line 7). The score is then 372

updated according to the predictionScore (Line 8) procedure. 373

The process is continued until no more features can be added 374

to SFb (Lines 9–12). 375

IFS relies on the predictionScore subroutine to detect the 376

most relevant features. This procedure takes the regression 377

model type and a set of features as input and returns the 378

average PCC that is computed as follows: the set TS is split 379

in a training window TW of size wT (Line 21) and a test 380

set TestNtw of size wF (Line 24). The subroutine trains the 381

regression model RM on the feature vectors TWi (restricted 382

to the features in SFb) and uses the resulting model RM∗ to 383

make predictions on the restricted test set (Line 24). The PCC 384

of the predicted values and the ground truth is then computed 385

(Line 26). The average of these scores, obtained by repeating 386

the abovementioned operations for all consecutive training 387

windows of size wT in TS, is eventually returned (Line 29). 388

IV. EXPERIMENTAL EVALUATION 389

This section reports on our experimental assessment of 390

PLATO’s performance. We also show that PLATO identifies 391

features that are important for the prediction. We conclude 392

this section by discussing results on predicting the density 393

of attacks, instead of number of attacks and extending the 394

ensemble of regression models used by PLATO. 395

We analyzed the impact of various parameters on the 396

performance of PLATO: the feature window size (wF = 397

{3, 4, 5, 10, 15, 20, 25}), the training window size (wT = 398

{3, 4, 5, 6, 10, 15, 20, 25}), the number of features to be 399

selected (k = {10, 20, 30, 40, 50}), the temporal offset (x = 400

{0, 1, 2, 3, 4, 5}), three feature selection approaches (MI, PCA, 401

and our IFS), and an ensemble of six regression models: 402

ridge [10], lasso [11], random forest [12], linear, polynomial, 403

and radial basis function (RBF) SVR [13]1. 404

Because classic k-fold cross validation may end up using 405

networks from the future (in training folds) to predict the 406

number of attacks for networks in the past (in the test fold), 407

we used a standard rolling window technique that ensures that 408

networks in the test data always occur after the networks in 409

the training data. The baseline, named BAS, splits the data 410

into a training set containing the first 80% of the time-indexed 411

networks and a test set with the last 20%. Predictions are made 412

for the last 20% of the data, and a PCC is calculated using 413

these predictions. Given a feature selection method X (either 414

MI or PCA), our baseline results BAS used four well-known 415

regression models (lasso, SVR, ridge, and random forest) 416

using X. The result reported by BAS is the best result obtained 417

by running these eight models in conjunction with X—hence, 418

this is a strong baseline. The only past work linking network 419

structure to lethality [1], [2] used a very small number of 420

features (already included in our BAS baseline) and used a 421

very simple linear regressor. BAS already does more than this 422

past work and, furthermore, augments it with eight models. 423

Table V shows the PCC score of each approach using 424

various feature selection methods. For readability, for each 425

1All experiments were run on a Linux cluster of Intel Xeon nodes with
RAM ranging from 16 to 64 GB. All the algorithms were written in Python.
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TABLE V

BEST PCC SCORES FOR BASELINE BAS AND PLATO

Function 1 Iterative Feature Search
Input: Training dataset T Sx = {〈 f v(N1, SF), A1+x 〉, . . . ,
〈 f v(NwF , SF), AwF+x 〉}; Ensemble of n Regression Model
types E = {RM1, . . . , RMn}; Set of features SF ; Sliding
window size wT .

Output: Top features Best Set[ j ] ⊆ SF for each RM j ∈ E .
1: Best Set[ j ] ← ∅, Best Score[ j ] = 0, 1 ≤ j ≤ n
2: for each regressor type RM j ∈ E in parallel do
3: findPath(SF, RM j , Best Set[ j ], Best Score[ j ]);
4: end for
5: return Best Set
6: procedure findPath(SF, RM j , SFb, Score)
7: fb = argmax

f ∈SF\SFb

predictionScore(RM j , SFb ∪ f )

8: Current Score = predictionScore(RM, SFb ∪ fb);
9: if Current Score > Score then

10: SFb = SFb ∪ fb

11: Score = Current Score
12: findPath(RM j , SF, SFb, Score)
13: else if Score > Best Score[ j ] then
14: Best Set[ j ] ← SFb

15: Best Score[ j ] = Score
16: end if
17: SF ← SF \ { fb}
18: procedure predictionScore(RM, SFb)
19: avgScore = 0;
20: i = 0;
21: for T W = {〈 f v(Nl , SF), Al+x 〉 | l ∈ [i + 1, i + wT ]} ⊆

T Sx do
22: T Wi = {〈 f v(Nl , SFb), Al+x 〉 | 〈 f v(Nl , SF), Al+x 〉 ∈

T W }
23: RM∗ = Select best parameter setting for RM on T Wi ;
24: T est Ntw = {〈 f v(Nl , SF), Al+x 〉 | l ∈ [i +wT +1, i +

wF ]}
25: predictions = Apply RM∗ to { f v(T est Ntw, SFb )};
26: avgScore = avgScore + PCC( predictions,

groundTruth);
27: i = i + 1;
28: end for
29: return avgScore/ i

dataset and temporal offset, we highlight the best PCC score in426

red. PLATO[MI] and PLATO[PCA] have the best scores, with427

the former outperforming the latter by a negligible amount.428

PLATO[IFS] obtains comparable scores as well. However,429

we note that both PLATO[PCA] and PLATO[MI] are faster430

TABLE VI

PAIRED t -TEST COMPARISONS OF PLATO VERSUS BASELINE

than PLATO[IFS] (one to two days versus two to three 431

weeks). To compare PLATO with the baseline in an unbi- 432

ased manner, we implemented two-tailed paired Students t- 433

tests and found that PLATO has significantly higher Pearson 434

coefficients than the baseline across groups, temporal offsets, 435

and feature-selection methods (all mean differences >0 and 436

P < 1.0e − 12, see Table VI). 437

A. Statistical Analysis 438

In this section, we provide an analysis showing that PLATO 439

identifies features that are important for prediction. For both 440

PLATO[PCA] and PLATO[MI] and for each temporal offset 441

x ∈ [0, 5], we selected the 20 most relevant features by 442

counting the number of times they were selected across all 443

training windows and ranked them from 1 to 20. That is, 444

every time a feature was selected as being a relevant feature 445

in a training window, we increased the count of that feature. 446

Hence, for each dataset (either AQ or ISIS) and for each 447

feature selection approach (either PCA or MI), we obtained 448

six lists of most relevant features (one for each value of x). 449

A total of 24 lists of features was, thus, obtained, each 450

consisting of 20 features. We then introduced the notion of 451

rank and occurrence to measure the frequency of a given 452

feature with respect to the different values of the temporal 453

offset x . In particular, rank is the average of the six individual 454

ranks obtained for each value of x , while occurrence is the 455

percentage of times that a given feature occurs over the 456

different temporal offsets (e.g., a feature has occurrence equal 457

to 100% if it is in the list of the top-20 features for each value 458

of x). 459

Table VII reports the rank and occurrence of the top features 460

with respect to the two datasets for PLATO[PCA]. It turned 461

out that, in the case of PLATO[PCA], for all values of x , all 462

the top ranked features rely on one SCC, regardless of the 463

dataset used. Moreover, Table VII shows that most of these 464

features involve the category operational, followed by 465
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TABLE VII

OCCURRENCE (OCC.) AND RANK OF THE TOP-FEATURES USED BY PLATO[PCA]

leadership. In fact, both datasets share the same top-four466

features—to ensure readability, the ranks of first-, second-,467

third-, and fourth-ranked features are highlighted in green,468

yellow, orange, and red, respectively—and, since these features469

involve the category operational and occurrence is 100%,470

it means that operational is used for all values of the471

temporal offset x .472

1) Macrofeatures: In the case of PLATO[MI], the “top”473

features look very heterogeneous. But, if we disregard the474

time lag, the “top” features become more homogeneous, which475

suggests that the same features are in play, but at different476

time lags. Therefore, to analyze the features selected by477

PLATO[MI], which according to Table V performs better than478

the other approaches, we grouped the most relevant features479

into macrofeatures. Two features were considered to be in480

the same group if they only differ in the time lag or if they481

only distinguish between features using different properties482

of nodes (e.g., alive and jail). Specifically, let φπ(t, f ) be a483

feature evaluated on the network Nt restricted to the functional484

category f and to the nodes, such that property π is true485

(where π ∈ {alive, jail, free}). Let �π(t, f, τ ) be the τ -lagged486

variant of a φπ(t, f ); the lagged variant uses the information487

provided by the network Nt−τ ; i.e., its value is equal to488

φπ(t − τ, f ). We, thus, collapsed all time-lagged features489

�π(t, f, τ ), for τ ∈ {1, 2, 3} and π ∈ {alive, jail, free}, of a490

given feature into a single macrofeature �(t, f ). We obtain491

66 macrofeatures for AQ and ISIS using PLATO[MI]. The492

original features from which a macrofeature is obtained are493

said to be compatible with the macrofeature [e.g., φπ(t, f ) is494

compatible with �(t, f )].495

Given a dataset and the six lists of top-20 features (one for496

each value of x) for that dataset, we measure the importance497

of macrofeatures as follows. For each macrofeature mf and498

rank r ∈ [1, 20], let mf(r) be the percentage of lists out of six 499

in which mf is compatible with a top-h feature in the list, with 500

h ≤ r . This means that if a macrofeature mf is compatible with 501

every top-1 feature in all the lists of most relevant features for 502

a dataset, then mf(r) = 100% for each r ∈ [1, 20]. Then, the 503

importance of mf is given by the integral of mf(r) between 504

r = 1 and r = 20, that is, the area under the cumulative 505

percentage mf(r). 506

Table VIII reports the top-ten highest ranked macrofeatures 507

for AQ and ISIS, respectively. For each dataset, they are 508

ranked from the most important to the least important. Due 509

to space constraints, we report the complete list of the 510

highest-ranked macrofeatures in the Supplemental Material. 511

The subnetworks of AQ involved in logistical support and 512

PCs are consistently among the most predictive macrofeatures. 513

As with the PLATO[PCA] results, the leadership and opera- 514

tional subnetworks are most important for predicting future 515

ISIS violence. Moreover, in the case of AQ, the average 516

degrees of nodes in various subnetworks are strongly linked 517

with lethality, as are properties associated with the diameters 518

of the SCCs, as well as other centrality measures. This is also 519

mirrored in the case of ISIS where degrees and diameters of 520

strongly connected subnetworks play an important role. 521

Due to space limitations, additional analytic results we 522

performed are reported in the Supplemental Material. 523

B. Density Prediction and Ensemble Extension 524

As different networks can last for different time periods, it is 525

of interest to predict the density of attacks, i.e., the number 526

of attacks per month when the network is valid. Predicting 527

density is complementary to predicting the number of attacks 528

and is of interest to analysts who cannot estimate the duration 529

of a network. We used PLATO to predict the number of attacks 530
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TABLE VIII

MACROFEATURES FOR PLATO[MI] FOR AQ (LEFT) AND ISIS (RIGHT) RANKED BY IMPORTANCE

TABLE IX

BEST PCC SCORES FOR PLATO PREDICTING DENSITY AND FOR PLATO WITH GCN IN THE ENSEMBLE

per month, as time intervals of our networks are multiple531

of one month. This makes no difference for the prediction532

for ISIS, as the duration of each network in ISIS is about533

one month. For AQ, the PCC scores of the PLATO[MI] and534

PLATO[PCA] variant predicting the density are shown in535

the third and fourth rows of Table IX, respectively. Density536

predictions by PLATO are more accurate, improving the PCC537

scores of 3.4% and 4.1% on average as opposed to predicting538

the raw number of attacks (see Table VI).539

Finally, we analyzed the impact of augmenting the PLATO540

ensemble (consisting of six regression models) with a graph541

convolution network (GCN) approach [14] appropriate for542

our network-based data. Although using advanced GCNs can543

avoid using application-specific features, the results shown in544

Table IX (rows from fifth to eighth) show that adding GCN545

to the ensemble leads to a very small improvement that is546

not statistically significant (all paired Students t-tests give547

p-values > 0.13 with 95% CI) for both ISIS and AQ for548

attacks or density prediction.549

V. LIMITATIONS AND FUTURE WORK550

While our AQ and ISIS data are among the first longitudinal551

datasets on these terror groups, we (like most researchers)552

are limited, because much data on these groups are classified.553

Though strong efforts were made to harmonize differences in554

the data collected by different coders, we do make assumptions555

on some missing data as detailed in Section II. Measuring556

lethality as the number of attacks as we have done is valid, but557

also a limitation. Measuring it via other metrics (e.g., number558

of casualties and economic damage) offers possible avenues559

for future work.560

Finally, embedding lethality computations into algorithms 561

for reshaping terror networks need to be studied further. Past 562

work suffered from being unable to measure the dependent 563

variable, i.e., efficacy of reshaping efforts [1], [2]. These 564

efforts may also be aided by parallel studies on how to shape 565

corporate board networks where data (e.g., when a person 566

joined or left a board) are more readily available and where 567

related dependent variables (e.g., share price) are also publicly 568

available. 569

VI. CONCLUSION 570

Our work contributes to the growing body of research 571

on forecasting political violence [15], [16], [17], [18]. Our 572

model, based on network features within terror groups, adds 573

to the existing research, which has found that including 574

network information about violent groups improves predictive 575

performance [19], [20]. We extend these efforts by leveraging 576

novel data about not only the nodes and edges within AQ 577

and ISISnetworks, but also node attributes (e.g., the rank and 578

role of individuals) and category types (e.g., logistical and 579

operational). Our ability to accurately predict the lethality of 580

AQ and ISIS suggests that there may be future gains to be 581

made by collecting and leveraging data on such networks. 582

Additional results (included in the Supplemental Material) 583

also suggest potential policy implications. For the top-ranked 584

features for PLATO[MI] we assessed the relationship between 585

the number of attacks via bivariate Poisson regression account- 586

ing for the robust variance and multiple hypothesis testing 587

(through the Bonferroni correction). For AQ, we find that 588

the coefficient for the features related to the average degree 589

of the PC subnetworks is generally statistically significant 590
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and positive. Put another way, AQ’s PCs network becoming591

more connected is associated with AQ carrying out more592

violence. This might explain why previous work does not find593

an association between propaganda output and the number of594

attacks carried out [21]. Previous works have not considered595

the impact of the members of the PCs network, so it is possi-596

ble scholars have overlooked important factors. For instance,597

it may be that changes in the connections between the mem-598

bers responsible for propaganda influences group effective-599

ness, possibly having a lagged impact. However, more work600

is needed to more fully assess the causality of this relationship.601

APPENDIX A602

DEFINITIONS OF FEATURES603

We first provide the definitions of the basic features listed in604

Tables I–IV and then discuss, in more detail, the time-lagged605

features. Recall that Nt = 〈Vt , Et , πt , catt〉 denotes a network606

existing during the time interval It .607

A. Weighted-Based Features608

The first class of features provides insights about the frac-609

tion of people at time t belonging to the subnetwork associated610

with a specific functional category f (e.g., operational).611

Definition 1 (Functional Category Fraction):612

φ1(t, f ) = |{v | v ∈ Vt , f ∈ catt(v) }|
|Vt | .613

Next, we define two classes of features, which are parame-614

trized by a weight function W : V → N. For instance, we may615

choose W (v) to be the vertex rank by defining W (v) equal to616

π(v, rank) for each v ∈ V .617

The first family of features consists of the average of the618

weights W (v) of people v in category f in the network Nt .619

Definition 2 (Average Category Weight):620

φW
2 (t, f ) =

∑
v | v∈Vt , f ∈catt (v) W (v)

|{v | v ∈ Vt , f ∈ catt(v)}| .621

The second class of features is the sum of the weights W (v)622

of people in category f divided by the sum of the weights of623

all people in the network at time t .624

Definition 3 (Normalized Category Weight):625

φW
3 (t, f ) =

∑
v | v∈Vt , f ∈catt (v) W (v)∑

v | v∈Vt
W (v)

.626

Thus, if function W returns the rank, i.e., W is the function627

r(v) = π(v, rank), we obtain φr
2(t, f ), which is the average628

rank of people in category f in the network Nt . Likewise,629

φr
3(t, f ) is the sum of the rank of people in category f divided630

by the sum of the ranks of all people in Nt .631

The next two features are obtained by doing the same as632

mentioned earlier with PageRank [22] instead of rank. Let633

PR(v) be the PageRank of vertex v. Then, φPR
2 (t, f ) is the634

average PageRank of people in category f in the network at635

time t , while φPR
3 (t, f ) is the sum of the PageRanks of people636

in category f divided by the sum of the PageRanks of all637

people in the network at time t .638

Similarly, we define φ
g
2 (t, f ) and φ

g
3 (t, f ) where the weight639

function g(v) = PR(v) · r(v) is used.640

In summary, using φW
2 (t, f ) and φW

3 (t, f ), we defined six 641

features, three for each group, where the weight function W (·) 642

is one of the following: rank r(·), PageRank PR(·), and the 643

product g(·) of rank and PageRank. 644

B. Features Based on Restrictions of the Network (RbF) 645

We use the concept of restriction of a network with respect 646

to a functional category to define features. The restriction 647

of N with respect to f ∈ C, denoted as Nt [ f ], is the 648

subnetwork induced by the nodes whose functional categories 649

include f ; functions π and cat are then restricted to nodes 650

in Nt [ f ]. 651

We start by defining features measuring the diameter of 652

our networks at different time points, possibly restricting the 653

network to some features. However, the diameter of a graph 654

is infinite if it is not strongly connected, and this may happen 655

for the kinds of networks we are dealing with. Thus, to define 656

features returning finite values, we will consider SCCs of 657

different sizes. 658

Given a network N , we use SCC(N ) to denote the set 659

of SCCs in N . Moreover, we use SCC(N , k) to denote the 660

set of SCCs of size k (i.e., containing k vertices). Given 661

N = 〈V , E, π, cat〉, we say that N is strongly connected if 662

SCC(N , |V |) is N itself. 663

Definition 4 (k-SCCs): 664

φ4(t, f, k) =
∑

k′∈[k,|Vt [ f ]|

∣∣SCC(Nt [ f ], k ′)
∣∣. 665

Feature φ4(t, f, k) is the number of SCCs of Nt [ f ] of 666

size greater than or equal to k. In the following, we use 667

kmax to denote the size of the largest SCCs of Nt [ f ]. Thus, 668

φ4(t, f, k) > 0 for k ≤ kmax; 0 otherwise. Moreover, if kmax = 669

|Vt [ f ]|, then φ4(t, f, k) = 1—the unique largest connected 670

component is Nt [ f ] itself. 671

Let dN (u, v) be the shortest distance (i.e., number of 672

edge hops) between vertices u and v in a network N . The 673

diameter of N = 〈V , E, π, cat〉 is defined as D(N ) = 674

maxu,v∈V dN (u, v); it is infinite if N is not strongly connected. 675

Definition 5 (Average k-SCC Diameter): 676

φ5(t, f, k) = avg{|D(N)| s.t. N ∈ SCC(Nt [ f ], k)}. 677

Feature φ5(t, f, k) is the average diameter of the SCCs of 678

Nt [ f ] having size k. It is worth noting that if N is strongly 679

connected, then φ5(t, f, |V |) coincides with the diameter of 680

|V |. Moreover, φ5(t, f, k) is finite for each k lower than or 681

equal to the size kmax of the largest SCCs of Nt [ f ]. 682

The last family of features based on the concept of diameter 683

considers the standard deviation σ of the diameters of SCCs 684

for the network Nt [ f ]: 685

Definition 6 (Standard Deviation SCC Diameters): 686

φ6(t, f ) = σ {φ5(t, f, k) | k ≤ kmax}. 687

The next family of features considers the density, instead 688

of the diameter. Feature φ7(t, f ) is the density of Nt [ f ]. 689

Definition 7 (Functional Subnetwork Density): 690

φ7(t, f ) = |{(u, v) | (u, l, v) ∈ Et [ f ]}|
|Vt [ f ]|2 . 691
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The next family of features, φ8(t, f ), represents the prob-692

ability that a random vertex v in Nt [ f ] is internally bicon-693

nected; i.e., it is involved in a triangle with two neighbors694

u′ and u′′ in Nt [ f ], which are connected to other vertices in695

Nt [ f ]. We use IB to denote the set of vertices in Nt [ f ] that696

are internally biconnected.697

Definition 8 (Internally Biconnected Fraction):698

φ8(t, f ) = |{v | v ∈ Vt [ f ] and v ∈ IB|
|Vt [ f ]| .699

Similarly, feature φ9(t, f ) will represent the probability that700

a random vertex v in Nt [ f ] forms a pentagon involving two701

neighbors u and u′ outside Nt [ f ] (i.e., u and u′ belong to702

Nt [{C \ f }], the restriction of the network to the functional703

categories different from f ). More formally, given N =704

〈V , E, π, cat〉 and N [ f ] = 〈V [ f ], E[ f ], π[ f ], cat[ f ]〉, we705

say that v ∈ N [ f ] is externally biconnected with respect to706

N [ f ] if the set of edges of the whole network N contains the707

edges (v, u′), (v, u′′), (u′, w′), (u′′, w′′), and (w′, w′′), where708

all the vertices are distinct and both u′ and u′′ belongs to709

V \ V [ f ]. We use EB to denote the set of vertices in Nt [ f ]710

that are externally biconnected.711

Definition 9 (Externally Biconnected Fraction):712

φ9(t, f ) = |{v | v ∈ Vt [ f ] and v ∈ EB|
|Vt [ f ]| .713

The features defined earlier rely on restricting the network714

to functional categories. More specific kinds of restriction are715

considered in the following.716

We define φ
a¬ j
i (t, f ) with i ∈ {4, . . . , 9} as the ver-717

sions of φi (t, f ), where we use the restriction of net-718

work N to the vertices v, such that π(v, alive) = true719

and π(v, jail) = false; that is, we only focus on peo-720

ple who are alive and not in jail. That is, given N =721

〈V , E, π, cat〉, features φ
a¬ j
i (t, f ) are defined using the net-722

work N [ f, aj ] = 〈V [ f, aj ], E[ f, aj ], π[ f, aj ], cat[ f, aj ]〉723

instead of N [ f ], where V [ f, aj ] = {v | v ∈ V , f ∈724

catt(v) π(v, alive) = true, π(v, jail) = false}, E[ f ] =725

(V [ f, aj ]×L×V [ f, aj ])∩E , and π[ f, aj ] and cat[ f, aj ] are726

the restrictions of functions π and cat to the domain V [ f, aj ].727

Likewise, we define features focusing only on people who728

are alive and use φa
i (t, f ) with i ∈ {4, . . . , 9} to denote them,729

which are versions of φi (t, f ), where we use the restriction730

of network N to the vertices v, such that π(v, alive) = true.731

Let degin
N (v) and degout

N (v) be the in- and out-degrees732

of vertex v with respect to network N , respectively. The733

following two features represent the average in- and out-734

degrees (calculated considering the edges of N at time t) of735

vertices belonging to the restriction of network N with respect736

to f at time t , respectively.737

Definition 10 (Functional In-Degree):738

φ10(t, f ) = avg
{
degin

Nt
(v)

∣∣ v ∈ Vt [ f ]
}
.739

Definition 11 (Functional Out-Degree):740

φ11(t, f ) = avg
{
degout

Nt
(v)

∣∣ v ∈ Vt [ f ]
}
.741

In contrast to the two features defined earlier, the following 742

features consider the restriction of the network to all the 743

functional categories except that given in input. 744

Definition 12 (Complementary Functional In-Degree): 745

φ12(t, f ) = avg
{
degin

Nt
(v)

∣∣ v ∈ Vt [C \ { f }]}. 746

Definition 13 (Complementary Functional Out-Degree): 747

φ13(t, f ) = avg
{
degout

Nt
(v)

∣∣ v ∈ Vt [C \ { f }]}. 748

C. Group-Based Features 749

Given Nt = 〈Vt , Et , πt , catt 〉 and a set S of vertices 750

(e.g., the set Vt [ f ] of vertices whose set of functional cat- 751

egories includes f ), we define the GPR of a set of nodes as 752

follows: 753

GPR(S) = (1− δ) · |S|
|Vt | + δ ·

⎛
⎜⎜⎜⎜⎝

∑
(u,l,v)∈Et ,

u∈V\S,
v∈S

GPR({u})
degout

Nt
(u)

⎞
⎟⎟⎟⎟⎠ 754

where degout
Nt

(u) is the out-degree of vertex u in Nt , and δ is a 755

damping factor as in the original definition of PageRank [22]. 756

Note that the GPR of a singleton {v} coincides with the 757

PageRank of v itself, that is, GPR({v}) = PR(v). 758

The definition of GPR allows us to define a family of feature 759

for Nt that depends on the choice of the set S. Specifically, 760

we define feature φ14(t, f ) as the GPR of the set of vertices 761

whose functional category is f . 762

Definition 14 (GPR): φ14(t, f ) = GPR(Vt [ f ]). 763

We define another family of features using the GBC [9] of 764

a given set S as follows. GBC(S) is the sum of the fractions 765

of all shortest paths, which traverse at least one node in S, 766

and, thus, represents the probability that a randomly selected 767

shortest path between two randomly selected vertices in Vt 768

contains a node in S. For instance, if S is the set of vertices 769

belonging to category f in the network at time t , then we 770

obtain the following feature. 771

Definition 15 (GBC): 772

φ15(t, f ) = GBC(Vt [ f ]). 773

This feature represents the probability that a randomly 774

selected shortest path between two randomly selected vertices 775

in Vt traverse a vertex whose functional category is f . 776

We can define several variants of φ14 and φ15 depending on 777

the choice of S. Also, we can aggregate the values of GPRs 778

and GBCs for different sets to obtain new features as follows. 779

Given a network Nt = 〈Vt , Et , πt〉 and a functional category 780

f ∈ C, we use Pr
t, f to denote be the set of the vertices 781

of Nt involved in the functional category f and with rank 782

greater than or equal to r , that is, Pr
t, f = {v | v ∈ Vt , f ∈ 783

catt(v), πt(v, rank) ≥ r}. For instance, assuming that the 784

maximum rank is 10, P10
2010,operational is the set the top-ranked 785

operational persons in 2010. 786

For a subset F = { f1, . . . , f|F |} ⊆ C of functional 787

categories, let Rr
t (F) = Pr

t, f1
× Pr

t, f2
× · · · × Pr

t, f|F | be 788
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the Cartesian product of the sets of r -ranked people from789

the functional categories in F at time t . Therefore, after790

appropriately choosing the value of r , Rr
t (F) consists of all791

possible |F |-tuples of highly ranked persons, one for each792

functional category in F . For each tuple τ ∈ Rr
t (F), let793

Sτ = {p1, . . . , p|F | | τ = (p1, . . . , p|F |)} be the set of the794

|F | people in τ .795

The next features are the average of GPRs and GBCs of all796

combinations of people at rank r or more for categories in F .797

Definition 16 (Functional Rank GPR):798

φ16(t,F , r) = avg
{
GPR(Sτ )

∣∣ τ ∈ Rr
t (F)

}
.799

Definition 17 (Functional Rank GBC):800

φ17(t,F , r) = avg
{
GBC(Sτ )

∣∣ τ ∈ Rr
t (F)

}
.801

D. Clustering-Based Features802

Given a path of length two in a network, we call a triplet803

the set of the three vertices in the path. A triplet is said to804

be open if the three vertices are connected by exactly two805

edges, while it is said to be closed if it consists of three806

edges—a closed triplet corresponds to a path of length 2 that807

is closed. Thus, a triangle consists of three closed triplets,808

corresponding to three closed path of length two, each starting809

on one of the vertices. The clustering coefficient is then defined810

as the number of closed triplets (i.e., three times the number811

of triangles) over the total number of triplets (both open and812

closed ones). It represents the probability that two vertices that813

are connected possibly through the third one are also directly814

connected.815

The clustering coefficient can be defined for both directed816

graphs, such as our network N = 〈V , E, π, cat〉, and undi-817

rected graphs such as the undirected (and unlabeled) version818

of N defined through E , the set of undirected (and unlabeled)819

edges obtained from E , as N = 〈V , E, π, cat〉. Specifically,820

given a (directed or undirected) graph G whose set of edges821

is E , the cluster coefficient for G is as follows:822

CC(G) = 3× |{(u, v,w) | (u, v), (v,w), and (w, u) ∈ E}|
|{(u, v,w) | (u, v) and (v,w) ∈ E}| .823

Thus, considering Nt = 〈Vt , Et , πt〉 and Nt = 〈Vt , Et , πt 〉,824

we define the following two features.825

Definition 18 (Global Directed Clustering Coefficient):826

φ18(t, f ) = CC(Nt [ f ]).827

Definition 19 (Global Undirected Clustering Coefficient):828

φ19(t, f ) = CC(N t [ f ]]).829

We now define two classes of features that rely on groups830

of top-ranked people from functional categories in a set F .831

Let Rr
t (F) = Pr

t, f1
× Pr

t, f2
× · · · × Pr

t, f|F | be the Cartesian832

product of the sets of r -ranked people from the functional833

categories in F = { f1, . . . , f|F |} ⊆ C at time t , and Sτ =834

{p1, . . . , p|F | | τ = (p1, . . . , p|F |)} be the set of the |F |835

people in τ ∈ Rr
t (F), as defined for the GbFs. Given a836

network N = 〈V , E, π, cat〉 and a set S of vertices, we use837

N [S] to denote the subnetwork consisting of only the vertices838

and edges involving S. Thus, for τ ∈ Rr
t (F), Nt [Sτ ] is the 839

subnetwork (at time t) consisting of only the edges between a 840

group of r -ranked people, each having a functional category 841

in F . The following feature is the average of the clustering 842

coefficients of all groups of r -ranked people whose functional 843

category is in F and belonging to the network at time t . 844

Definition 20 (Average Group Functional Ranked CC): 845

φ20(t,F , r) = avg
{
CC(Nt [Sτ ])

∣∣ τ ∈ Rr
t (F)

}
. 846

Next, we consider immediate neighbors of r -ranked people 847

in Rr
t (F) and define a feature representing the average of the 848

clustering coefficients of the neighbors of r -ranked people. 849

More formally, given a network N = 〈V , E, π〉 and a set S of 850

vertices, we use nbN (S) to denote the immediate neighbors of 851

S in N , i.e., nbN (S) = {v | (v, l, u) or (u, l, v) ∈ E, u ∈ S}. 852

Given this, we obtain the following feature. 853

Definition 21 (Average Neighbor Functional Ranked CC): 854

φ21(t,F , r) = avg
{
CC(Nt [Sτ ∪ nbNt (Sτ )])

∣∣ τ ∈ Rr
t (F)

}
. 855

E. Time-Lagged Features 856

We define time-lagged variants for each feature. For each 857

t ∈ T , functional category f ∈ C, and feature φi , we define 858

time-lagged features with τ ∈ {1, 2, 3}. 859

Definition 22 (Lagged Feature Value): 860

�i (t, f, τ ) = φi(t − τ, f ). 861

That is, �i(t, f, τ ) is the value taken by feature φi at the 862

previous time point t − τ . 863

Definition 23 (Lagged Average Value): 864

�i(t, f, τ ) = avg{φi(t
′, f ) | t ′ ∈ [t − τ, t]}. 865

Thus, �i(t, f, τ ) is the average of the values of the last 866

τ + 1 single-time point features. 867
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