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Abstract— Without measures of the lethality of terrorist
networks, it is very difficult to assess if capturing or Kkilling a
terrorist is effective. We present the predictive lethality analysis of
terrorist organization (PLATO) algorithm, which merges machine
learning with techniques from graph theory and social network
analysis to predict the number of attacks that a terrorist network
will carry out based on a network structure alone. We show that
PLATO is highly accurate on two novel datasets, which cover Al
Qaeda (AQ) and the Islamic State (ISIS). Using both machine
learning and statistical methods, we show that the most significant
macrofeatures for predicting AQ’s lethality are related to their
public communications (PCs) and logistical subnetworks, while
the leadership and operational subnetworks are most impactful
for predicting ISISs lethality. Across both groups, the average
degree and the diameters of the strongly connected components
(SCCs) within these networks are strongly linked with lethality.

Index Terms— Counterterrorism, machine learning, terrorism.

I. INTRODUCTION

HOUGH terrorism has been a major concern since the
1970s, the events of 11 September 2001 saw the emer-
gence of the “global war on terror.” Since then, billions of
dollars and thousands of lives of military personnel, and even
more lives of civilians, have been expended in this war.
Counterterrorism efforts over the last 20 years have included
a number of instruments aimed at targeting the lethality of ter-
ror networks. These include offering rewards for information
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leading to the capture and/or conviction of certain individuals,
as well as operations to remove terrorists from their networks
(e.g., the operation to capture Osama bin Laden).

When a terror network is targeted in this way, the net-
work reshapes itself [1], [2], and so when considering the
removal of a terrorist, such as Osama bin Laden from the
Al Qaeda (AQ) network, it is important to be able to predict
the lethality of the resulting network (after the removal).
In this article, we propose methods to correlate the structure
of a network with its lethality. While several definitions of
lethality are possible, we define lethality as the estimated
number of attacks carried out by a future terror network after
reshaping. We develop a novel algorithm called predictive
lethality analysis of terrorist organization (PLATO) for this
purpose. When a counterterrorism agency considers removing
a terrorist, it can use a system, such as shaping terrorist
organizational network efficiency (STONE) [1], [2], to identify
the new possible networks that result (and their associated
probabilities) and then use a lethality model, such as the one
proposed in this article, to identify the expected lethality of
the resulting network.

The first effort at building such a lethality model was in [3]
who proposed removing critical nodes in a network using a
node centrality measure. But, they did not link networks to
lethality, and because their data were cross sectional, they
were unable to assess the impact of their method on lethality,
as there were no “before removal” and “after removal” states
of the network. Horowitz and Potter [4] find a correlation
between the connections between groups and lethality, but
also rely on cross-sectional data. Others have analyzed terror
networks from the point of view of cell structure [5], their abil-
ity to communicate while remaining covert [6], [7], and how
they can be destabilized [8]. STONE [1], [2] developed four
simple lethality measures, which were tested on small datasets,
along with sophisticated methods to identify who to remove
from the network. To effectively forecast the lethality of terror
groups and to evaluate how various policy interventions impact
a terrorist network’s lethality, we need features that involve the
group’s network structure, which are longitudinal (vary over
time) and a model that can accurately map these features to
group violence.

Our contributions fall into three categories. First, we lever-
age two novel longitudinal network datasets detailing the rela-
tionships between members of two prominent terror groups,
AQ and the Islamic State (ISIS). Our AQ time-series network
dataset consists of 16 years of data comprising 139 networks.
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Our ISIS dataset consists of 49 networks spanning four years.
To the best of our knowledge, these are the most extensive
datasets showing the evolution of these two networks over
time. We define a set of network-related features, some of
which are used for the first time in terrorist network analysis.
These features are based on the functional roles played by
individual terrorists and the subnetworks induced by different
functional roles using concepts from graph theory and social
network analysis.

Second, we devise new algorithms to predictively link
a terrorist network structure to future attacks. Our PLATO
algorithm is an ensemble that uses a mix of regression
methods, feature selection methods, and time lags to solve the
following problem. Suppose a new network N, comes into
existence at the beginning of a time period /,;. We would
like to predict the lethality of A,y as soon as it comes into
existence. PLATO is initially invoked with a set of features,
some of which are eliminated by the algorithm. Using past
ground-truth data up to and before time period I,, PLATO
identifies the best parameters for an ensemble of regressors
and uses late fusion to learn the optimal weights. Thus,
PLATO uses a careful mix of feature engineering, subnetwork
selection, feature selection, and regression, together with an
ensemble model for generating predictions. We show that
all three versions of PLATO significantly beat out a strong
regression baseline in terms of predictive accuracy measured
by Pearson correlation coefficient (PCC).

Third, we derive a new understanding of the link between
the lethality of AQ and ISIS and their network structure.
Because many features vary slightly, we introduce the
concept of a macrofeature, which is an aggregation of similar
features into one. We study which macrofeatures are most
closely linked to AQ and ISIS’s lethality. Surprisingly, the
subnetwork of AQ involved in public communications (PCs)
contributes to five of the most significant macrofeatures,
while the logistical subnetwork of AQ is involved in four.
In contrast, in the case of ISIS the top-ten most significant
features are dominated by the leadership subnetwork (six
of ten), followed by the operational subnetwork (two of
ten). Moreover, in the case of AQ, the average degrees
of nodes in various subnetworks are strongly linked with
lethality, as are properties associated with the diameters of
the strongly connected components (SCCs), as well as other
centrality measures. This is also mirrored in the case of ISIS
where degrees, centrality measures, and diameters of strongly
connected subnetworks play important roles.

II. NETWORK AND FEATURES

A terrorist network A/ = (V, E, «, cat) consists of four
parts: a set V of nodes (terrorists), a set E of edges
linking those nodes (relationships between terrorists), and
two functions 7 and cat. The function cat assigns a set of
functional categories to each terrorist. The set of possible
functional categories is C = {operational, financial,
logistical, R&T, PC, leadership}, where R&T and
PCs stand for recruitment and training and public communi-
cations, respectively. For instance, during the March—August
2015 time period, Bana Fanaye, one of the leaders of Boko
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Fig. 1.  AQ network during September—October 2014. This network has
48 nodes and 58 edges in total. The different node shapes denote the functional
categories, and the colors denote the individual’s state during that time frame.
Node size is proportional to the individual’s rank.

Haram, had two associated functional categories: logistical
and leadership. The function = assigns a value for each
property that a terrorist (node) might have. For instance, rank
is a property on a O (lowest rank) to 10 (top leader) scale.
Thus, we might have rank(Osama bin Laden, 10), signifying
that bin Laden had a value of 10 for the rank property in
a given network. Nodes may have other properties, such
as dead, jail, and alive (and free). Another important node
property we consider is role (e.g., with values, such as trainer,
bomb maker, and so on). Every node is required to have
values for the rank and role properties, but other properties
may or may not have associated values.

Formally, a terrorist’s category of a terrorist can be included
within 7. We treat cat separately as our analysis focuses
on these categories. The properties in 7 may be positively
or negatively correlated with cat. A bomb maker (role) is
rarely the leader (negative correlation), but is often in the
operational category (positive correlation). This does not
affect our analysis.

As terrorist networks evolve over time, our data for each
of the AQ and ISIS networks have an associated set of T
time intervals Io, I1, ..., Ir. We use N, = (V,, E;, m;, cat;) to
denote the snapshot of a network at the time interval /, (with
t € T). An example of network from our dataset for the time
interval September—October 2014 is shown in Fig. 1. For each
network A;, which existed during the time interval I,, we also
collected A,, the number of attacks carried out by the terror
network during time ;.

We built such tiime series of networks for AQ from Novem-
ber 2001 to January 2017 and for ISIS from December
2012 to January 2017. The ISIS dataset consists of 49 time-
indexed networks, with an average time interval (i.e., the
period of validity of time-indexed networks) of approximately
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TABLE I
WbFs. DEFINITIONS 1-3 CAN BE FOUND IN APPENDIX A-A

Feature ‘ Description

‘ Example

Functional Category Fraction ¢1(t, f)

(cf. Definition 1) at time ¢

Fraction of people belonging to category f

¢1(2015-03,pC): percentage of people belonging to the func-
tional category Public Communications in March 2015

Average Category Weight ¢%V (¢, f)

(cf. Definition 2) at time ¢

Average weight W of people in category f

¢5(2015-03,pC), where r(v) = (v, rank): average rank of
people in category Public Communications in March 2015

Normalized Category Weight
Y (t, f) (cf. Definition 3)

of people at time ¢

Fraction of total weight W of people with
category f at time ¢ over the total weight

¥ 1(2015-03,pC), where PR(v) is the PageRank of v: sum
of the PageRanks of people belonging to category PC in
March 2015 over the sum of PageRanks of all the people
at the same time

one month. The average number of members per network
is 74.17, with 10 as the min and 110 as the max. The
number of relationships in the ISIS dataset ranged from 12 to
642 across the networks, with an average of 437.11. The AQ
dataset consists of 139 time-indexed networks with an average
time interval of between three and four months. The average
number of members per network is 39.16, with a min of
2 and a max of 159. The average number of relationships per
network was 113.90, with a minimum of 26 and a maximum
of 808. We designed a codebook detailing the data collection
procedures involving more than 20 social scientists to code the
data. The data were collected from a variety of open-source
materials in multiple languages, including English, Arabic,
French, and Spanish. The coders mainly relied on primary
sources, including jihadist propaganda and social media posts,
publicly available intercepted documents produced by these
organizations, and declassified intelligence reports. Examples
of primary sources we relied upon include statements issued
by the media arm of AQ in the Islamic Maghreb (Al-Andalus
Media Foundation), first-hand accounts of troop movements
in Idlib Governorate posted to Twitter in December 2015, and
U.S. Department of State announcements of additions to its
list of designated terrorists. The coders also consulted sec-
ondary sources, including books, journal articles, newspapers
and news sites, and other publications. Coders factored in
the credibility and possible biases of each source consulted
and sought to corroborate all factual claims across multiple
independent sources. The coding process included meetings
to harmonize the data via discussion when coders coded data
differently. Values for some missing properties were filled
in using a set of assumptions. Missing start/end dates of a
terrorist’s membership were manually set to be consistent with
the known relationships of the terrorists. If a relationship start
date was unknown, we set the start date of the relationship to
the start date of one of the two members who next joined the
network. A similar adjustment was made for relationship end
dates. We remove isolated vertices in the network. In total,
the number of vertices and relationships filled in by such
assumptions is 14.6% and 32.05%, respectively, for the ISIS
and AQ datasets.

Features: We developed a feature vector for each network
N;. We use fv(N,, SF) to denote the feature vector extracted
for N, for a given set SF of features. We developed a total of
3738 features consisting of 534 basic features and 3204 time-
lagged variants of the basic features. Because our data detail

the category of each individual, and their rank and role within
the network, we can construct a variety of novel features.
We are able to treat terror groups, not as unitary actors, but
rather as collections of individuals who exhibit considerable
heterogeneity and dynamics over time. Our ability to construct
a range of novel network features can help guide future work
aiming to predict and understand the behavior of terror groups.

Our basic features include weight-based features (WbFs),
restricted network-based features (RbFs), group-based features
(GbFs), and cluster-based features (CbFs). WbFs assign a
weight to each node (e.g., role, a centrality score, and a
combination of rank and centrality score) and then aggre-
gate them together for the network in different ways (e.g.,
mean/median of these node weights with respect to all nodes;
mean/median/expected value of these node weights with
respect to nodes belonging to a given functional category).
RbFs look at the characteristics of the induced subnetwork that
results when only certain functional categories are considered,
e.g., operational. It includes features, such as the number
of k-SCCs of size k or more with varying k, the average
diameter of k-SCCs, the average standard deviation of k-SCCs,
the density of various subnetworks induced by restricting
to specific functional categories, and more. GbFs look at
sets of nodes belonging to a given functional category (e.g.,
all operational nodes) and compute the group PageR-
ank (GPR; which we define), group betweenness centrality
(GBCO) [9], and various combinations of such metrics. CbFs
include global clustering coefficients for both the directed and
undirected versions of the networks, different kinds of cluster-
ing coefficients obtained by focusing on specific subnetworks.
Tables I-IV summarize the basic features that we introduced.
Every row of one of these tables contains the name of a class of
features, together with a brief description and an example of a
concrete feature from that class. The formal definitions of the
features can be found in Appendix A. For the sake of brevity,
we use ¢;(t, F) with i € [1,21] and F C C to refer to the
different kinds of features whose name and description are
provided in the table. In most cases, F is a singleton—so
we simply write ¢; (¢, f) with f € C. Some features take an
additional parameter, such as a natural number k, as input—so
we may write ¢; (¢, f, k). Time-lagged variants of these four
types of basic features are also defined, because, for instance,
the lethality of a network may depend upon the values of these
basic features from past networks. Definitions can be found in
Appendix A.
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FEATURES BASED ON RESTRICTIONS OF THE NETWORK. DEFINITIONS 4—13 CAN BE FOUND IN APPENDIX A-B

’ Feature

|

Description

‘ Example

k-Strongly Connected Components
@a(t, f, k) (cf. Definition 4)

Number of Strongly Connected Compo-
nents (SCCs) having size > k for the
restricted network N [f]

¢$4(2015-03,pC,10): number of SCCs of size greater than or
equal to 10 for the network restricted to category PC at time
March 2015

Average k-SCC Diameter ¢5(t, f, k)
(cf. Definition 5)

Average diameter of k-sized SCCs for the
restricted network N¢[f]

¢5(2015-03,pC,10): average diameter of SCCs of size k w.r.t.
the network restricted to category PC at time March 2015

Standard Deviation SCC Diameters
¢6(t, f) (cf. Definition 6)

Standard deviation of the diameters of SCCs
for the network N¢[f]

¢6(2015-03,PC): standard deviation of the diameters of SCCs
for the network restricted to category PC at time March 2015

Functional Sub-network Density
¢7(t, f) (cf. Definition 7)

Density of the restricted network A [f]

¢7(2015-03,pC): density (i.e., fraction of actual edges over
potential ones) of the network restricted to category PC at
time March 2015

Internally Biconnected Fraction
¢s(t, f) (cf. Definition 8)

Probability that a random vertex v in N¢[f]
belongs to a triangle (v, u, w) s.t. u and w
are connected to other vertices in Nz [f]

¢8(2015-03,PC): probability that a vertex v in the network
restricted to PC at time March 2015 belongs to a triangle
whose vertices different from v are connected to other vertices
in the restricted network

Externally Biconnected Fraction
do(t, f) (cf. Definition 9)

Probability that a random vertex v in N¢[f]
forms a pentagon involving two neighbors

outside Ni|[f]

¢$9(2015-03,PC): probability that a vertex v in the network
restricted to PC at time March 2015 forms to a pentagon
having two vertices different from v and connected outside
the restricted network

Functional In-Degree ¢10 (¢, f)
(cf. Definition 10)

Average in-degree of vertices in N¢[f]

$10(2015-03,pC): average in-degree of vertices belonging to
the network restricted to category PC at time March 2015

Functional Out-Degree ¢11(t, f)
(cf. Definition 11)

Average out-degree of vertices in N¢[f]

$11(2015-03,pC): average out-degree of vertices belonging
to the network restricted to category PC at time March 2015

Complementary Functional In-Degree
¢12(t, f) (cf. Definition 12)

Average in-degree of vertices in N¢[C\{f}]
(i.e. the network restriction complementary

to f)

$12(2015-03,pC): average in-degree of vertices belonging to
the network restricted to all categories but PC in March 2015

Complementary Functional
Out-Degree ¢13(t, f) (cf.
Definition 13)

Average out-degree of vertices in A¢[C \
{f}] (restriction complementary to f)

$13(2015-03,PC): average out-degree of vertices belonging
network restricted to all categories but PC at time March 2015

TABLE III

GbFs. DEFINITIONS 14—17 CAN BE FOUND IN APPENDIX A-C

Feature

Description

‘ Example

Group PageRank ¢14(¢, f)
(cf. Definition 14)

Group-page-rank (GPR) of the set of ver-
tices in Ny whose functional category is f

$14(2015-03,pC): GPR of vertices with functional category
Public Communications in the network in March 2015.

Group Betweenness Centrality
¢15(t, f) (cf. Definition 15)

Group Betweenness Centrality (GBC) of the
set of of vertices in N whose functional

category is f

$15(2015-03,pC): GBC, i.e. probability of traversing a vertex
having functional category PC in the network concerning the
time interval March 2015

Functional Rank GPR ¢16(t, F,T)
(cf. Definition 16)

Average GPR of all sets of people with rank
> r and function category in F at time ¢

$16(2015-03,pC,10): average GPR of people ranked at least
10 and with category PC in March 2015

Functional Rank GBC ¢17(¢, F, 1)
(cf. Definition 17)

Average GBC of all sets of people with rank
> r and function category in F at time ¢

$17(2015-03,pC,10): average GBC of people ranked at least
10 and with category PC in March 2015

TABLE IV

CbFs. DEFINITIONS 18-21 CAN BE FOUND IN APPENDIX A-D

’ Feature

Description

‘ Example

Global Directed Clustering Coefficient
¢18(t, f) (cf. Definition 18)

Clustering coefficient of N¢[f]

$18(2015-03,pC): clustering coefficient of the network re-
stricted to category PC in March 2015

Global Undirected Clustering
Coefficient ¢19(t, f) (cf.
Definition 19)

Clustering coefficient of the undirected ver-

sion of N¢[f]

$18(2015-03,pC): clustering coefficient of the undirected ver-
sion of network restricted to category Public Communications
in March 2015

Average Group Functional Ranked CC
¢20(t, F,r) (cf. Definition 20)

Average of the cluster coefficients (CC) of
all sets of r-ranked people whose category
is in F at time ¢

$20(2015-03,pC,10): clustering coefficient of the sets of
people whose rank is at least 10 and having category Public
Communications in March 2015

Average Neighbor Functional Ranked
CC ¢21(t, F,r) (cf. Definition 21)

Average of the cluster coefficients of the
neighbors of r-ranked people whose cate-
gory is in F at time ¢

$21(2015-03,pC,10): average clustering coefficient of the
neighbors of people whose rank is at least 10 and having
category PC in March 2015

ITI. PLATO ALGORITHM
Algorithm 1 shows our PLATO algorithm to predict the
number of attacks that a terrorist group will carry out at the

next time point. As mentioned earlier, our data consist of a
time-series of networks N, N3, ... Each network N is in
existence during an associated time interval /;. Without loss of
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Algorithm 1 PLATO With Ensemble and Late Fusion

Input: Set of features SF; Training dataset 7S, =
{(fv(Ma SF)’ AH-)C)’ R <fv(-/\[t—x, SF)) At)}» New net-
work N y1; Ensemble of n Regression Model types £ =
{RM,, ..., RM,}; Feature window size wr < t —x, Train-
ing window size wr < wy; Feature selection approach FA;
Number of top features k.

Output: Estimated number of attacks ;\\,HH for Niyiax;
PCC score.

1: groundTruth = (Aj1y, ..., Ar);

2: prediction[j]=0, result[jl=1,1<j <n;

3.1 =0;

4: for SW; = {({(fo(Ny, SF),Aey) | C€li+1, i +wrl}
do

5. if FA =1IFS then

6: SF;; = lterativeFeatureSearch(SW;, &, SF, wr);

7:  else

8: SF;j = Select top-k features from SF using FA for

SWi;

9:  end if

10 TW = {{foWNV,SF), A ) |l eli+1+wp—wr, i+
wrl}

11:  for each regressor type RM; € £ in parallel do
12: Tle = {(fv('/\[l,SEj)aA1+x>|<fv(M9SF)’Al+X> €

TW}
13: RM; = Select best parameter setting for RM; on
TWij,
14: if i + wr <t — x then
15: result[j] = Apply RM; to fo(Nitw,+1, SFij);
16: prediction|j] = prediction[j]®; result[j];
17: i=i+1;
18: else
19: result[j] = Apply RM to foWNig1, SF);
20: break;
21: end if
22: end for
23: end for
24: W = argmax PCC(E;.'ZIW[j] - prediction[j],
Ws.t I1, Wlil=1
groundTruth);
25: score = PCC(X_,WI/] prediction[j],
groundTruth);

26: result;y = E;‘ZIW[j] -result[j];
27: return result;s, score

generality, we assume that the interval /; precedes the interval
Iy for all j.

Suppose the network in existence now is network N; i.e.,
networks N, ..., N;_; are from the past, and the current
network is N;. A new network N, ,; comes into effect when
a change occurs (e.g., a terrorist is captured or killed, some
relationships between terrorists change, we have information
about some new terrorists, and so on). The idea is that PLATO
will be used to predict the lethality of a new network N
as soon as the new network comes into being. For instance,
the AQ network N; changed on May 2011 when Osama bin

Laden was killed. PLATO could be applied immediately on
the new network N;;; resulting from the change of Osama
bin Laden’s status from “alive (and free)” to “dead.” Though
the nodes and edges in this new network may be the same
as in the previous one, it is considered different, because a
property of one node (bin Laden) has changed. The ability to
produce a new predictions when there are structural changes
in the network, new edges or nodes are added, or simply a
change in roles within the network, and a lower ranked leader
is promoted, opens new possibilities for making more dynamic
forecasts of terror group lethality.

Suppose the networks in {Ni,...,N;} are known,
Niy1 is the new network, and we are interested
in estimating A,ijyy, the number of attacks in the
future network N;yi1y,. PLATO takes a training set
TS, = {(EVN, SF), Arx), oo (EV(Ni—y, SF), A)}
consisting of feature vectors of the first + — x networks
we have, along with the corresponding numbers of attacks
carried out 1 + x networks in the future (but never going
beyond network N,), and tries to predict how many attacks
the network A, 1., will carry out. One challenge in making
this prediction is that we do not know how many and which
past networks in {\j,..., N;} should be considered. The
reason is that we do not know which of the networks in
{M, ..., N;} provides an important signal for predicting
Ni414,. For instance, does the number of attacks carried out
by N;;1 depend on just A;? On just N;_, N;_; and N;?
Additionally, we do not know which subset of features are
relevant.

PLATO handles these challenges using a sliding window
(Line 4) of wr networks from the training set TS, in each iter-
ation of the main for loop (Lines 4-23). For each sliding win-
dow SW;, it iteratively selects relevant features (Lines 5-9).
Feature selection can be done using any method—in our
experiments, we consider principal component analysis (PCA)
and mutual information (MI) as well as a feature selection
approach that we defined called iterative feature search (IFS)
(Line 6). The best features for each regressor-type RM; are
stored in the set SF;;. In the case of PCA and MI, these
sets of features are the same for each regressor. In the case
of IFS, they can change as IFS selects the best features by
considering the regression model type used. More details on
IFS are provided at the end of this section.

PLATO then creates a training set TW consisting of the
feature vectors/number of attacks of the last wr networks from
TS, in SW; (Line 10). In Lines 11-22, PLATO trains each
regression model type [e.g., lasso versus ridge versus support
vector regression (SVR)] in parallel and does hyperparameter
optimization to create the best regressors RMj for each
regressor type (Line 13). Each regression model type in the
ensemble is trained using the feature vectors TW;; (i.e., the
training set restricted to the selected features). If the sliding
window is not the last, i.e., there are still networks that have
not been considered in the training dataset, the regression
model RMj is used to predict the number of attacks A; ), +14x
using the network following the sliding window (Line 15),
and the prediction list is updated with this new prediction
(Line 16). Otherwise, RM; is applied to the test network A,
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Fig. 2. Execution of PLATO. (a) First iteration. (b) Second iteration. (c) Last
iteration.

thus making a prediction of A, 4, (Line 19). In particular,
in Line 16, the best jth regression model type generates a
prediction, and the @; operator concatenates the vector of
results (prediction vector) generated by the jth regression
model type. The @, reflects this concatenation operator.

When we get to Line 24, the situation is as follows: the
best regressor RMjf for each regressor-type RM; has made
the same number of predictions, each stored in prediction[ ]
(whose size is the same as that of groundTruth). PLATO tries
to find an assignment of weights W (such that the weights
sum to 1) for the regressors in the ensemble, so that PCC
of the linear combination of the predictions made by the
ensemble and the ground truth is the highest possible. The
weights are discovered using a grid search that considers all
combinations of weights in the increments of 0.2. PLATO
eventually returns the PCC corresponding to the best weight
assignment (Line 25) along with the predicted number of
attacks A\r+1+x for network N,.i., (Line 26).

Fig. 2 illustrates how PLATO works when wr = 3,
wr = 2, and x = 1, and the ensemble consists of just
one regression model, showing the first two iterations of the
algorithm [Fig. 2(a) and (b)] and the last one [Fig. 2(c)] on
a toy example. At each iteration, a subset SF;; of features
(highlighted in green) is selected and used by the regression
model to make a prediction of the number of attacks carried
out one time point ahead.

Selecting Features via Iterative Search: Computing the set
of best features is an integral part of PLATO. To do this,
we defined a bottom-up greedy algorithm called iterated fea-
ture search (Function 1) that iteratively selects features as long
as predictive accuracy increases. Intuitively, a set of features
are good if they allow us to accurately predict the number
of attacks occurring in the future. To this end, Function 1
considers the regression model type during its execution and,
for each model RM, keeps track (via the BestSet[j] vector)
of the features that allow RM; to generate the highest PCC
score. The latter is found upon calling the findPath subroutine,
which takes as input, a set of features SF, a regression model-
type RM;, a set of features SF;,, and PCC Score obtained
by RM; using the features in SF;, and then extends SF; as
much as possible (i.e., till Score increases). Initially, the set
of features is empty, and the score is set to 0 (Line 3). The
set is then updated by exploring all unexplored features in SF
and adding to it the feature f, that, together with those in
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SF;,, generates the highest score (Line 7). The score is then
updated according to the predictionScore (Line 8) procedure.
The process is continued until no more features can be added
to SF;, (Lines 9-12).

IFS relies on the predictionScore subroutine to detect the
most relevant features. This procedure takes the regression
model type and a set of features as input and returns the
average PCC that is computed as follows: the set TS is split
in a training window TW of size wy (Line 21) and a test
set TestNtw of size wr (Line 24). The subroutine trains the
regression model RM on the feature vectors TW; (restricted
to the features in SF;,) and uses the resulting model RM* to
make predictions on the restricted test set (Line 24). The PCC
of the predicted values and the ground truth is then computed
(Line 26). The average of these scores, obtained by repeating
the abovementioned operations for all consecutive training
windows of size wr in TS, is eventually returned (Line 29).

IV. EXPERIMENTAL EVALUATION

This section reports on our experimental assessment of
PLATO’s performance. We also show that PLATO identifies
features that are important for the prediction. We conclude
this section by discussing results on predicting the density
of attacks, instead of number of attacks and extending the
ensemble of regression models used by PLATO.

We analyzed the impact of various parameters on the
performance of PLATO: the feature window size (wp =
{3,4,5,10, 15, 20, 25}), the training window size (wy =
{3,4,5,6, 10, 15, 20, 25}), the number of features to be
selected (k = {10, 20, 30, 40, 50}), the temporal offset (x =
{0, 1,2, 3,4, 5}), three feature selection approaches (MI, PCA,
and our IFS), and an ensemble of six regression models:
ridge [10], lasso [11], random forest [12], linear, polynomial,
and radial basis function (RBF) SVR [13]".

Because classic k-fold cross validation may end up using
networks from the future (in training folds) to predict the
number of attacks for networks in the past (in the test fold),
we used a standard rolling window technique that ensures that
networks in the test data always occur after the networks in
the training data. The baseline, named BAS, splits the data
into a training set containing the first 80% of the time-indexed
networks and a test set with the last 20%. Predictions are made
for the last 20% of the data, and a PCC is calculated using
these predictions. Given a feature selection method X (either
MI or PCA), our baseline results BAS used four well-known
regression models (lasso, SVR, ridge, and random forest)
using X. The result reported by BAS is the best result obtained
by running these eight models in conjunction with X—hence,
this is a strong baseline. The only past work linking network
structure to lethality [1], [2] used a very small number of
features (already included in our BAS baseline) and used a
very simple linear regressor. BAS already does more than this
past work and, furthermore, augments it with eight models.

Table V shows the PCC score of each approach using
various feature selection methods. For readability, for each

TAll experiments were run on a Linux cluster of Intel Xeon nodes with
RAM ranging from 16 to 64 GB. All the algorithms were written in Python.
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TABLE V
BEST PCC SCORES FOR BASELINE BAS AND PLATO

Function 1 Iterative Feature Search

Input: Training dataset 7S, = {(fo(N], SF), Aj4y), ...,
(foWNu,, SF), Ay, +x)}; Ensemble of n Regression Model
types € = {RMy, ..., RM,}; Set of features SF; Sliding
window size wr.

Output: Top features BestSet[j] € SF for each RM; € £.

: BestSet[j] < 0, BestScore[j]l=0,1<j <n

: for each regressor type RM; € £ in parallel do

findPath(SF, RM;, BestSet[j], BestScore[j]);

: end for

: return BestSet

: procedure findPath(SF, RM;, SF,, Score)

: fp = argmax predictionScore(RM;, SF, U f)
fESF\SF, '
8: CurrentScore = predictionScore(RM, SF, U f);

9: if CurrentScore > Score then
SF,=SF,U f3
11:  Score = CurrentScore

12:  findPath(RM;, SF, SFy, Score)

13: else if Score > BestScore[j] then

14:  BestSet[j] < SF;

15:  BestScore[j] = Score

16: end if

17: SF < SF\ {f»}

18: procedure predictionScore(RM, SF,)

19: avgScore = 0;

20: i =0

21: for TW ={fo(N;,SF), A )|l eli+1,i+wr]} C

TS, do

2: TWi = {{(foN, SF), A} | (foN, SF), Argy) €
TW}

23:  RM* = Select best parameter setting for RM on T W;;

24:  TestNtw = {{fo(N;, SF), Ajyx) | L€ li+wr+1, i+
wrl}

25:  predictions = Apply RM* to {fv(TestNtw, SFy)};

26:  avgScore = avgScore + PCC(predictions,
groundTruth);

27 i =i+1;

28: end for

29: return avgScore/i

dataset and temporal offset, we highlight the best PCC score in
red. PLATO[MI] and PLATO[PCA] have the best scores, with
the former outperforming the latter by a negligible amount.
PLATO[IFS] obtains comparable scores as well. However,
we note that both PLATO[PCA] and PLATO[MI] are faster

AL QAEDA ISIS
T = T = =2 | xz=3 | z= T = T = T = T = T = T = T =
BAS[MI] -0.250 | -0.282 | -0.312 | 0.341 0.390 0.375 0.402 -0.382 | -0.248 | -0.235 | 0.502 0.508
BAS[PCA] -0.278 | -0.353 | -0.335 | 0.262 0.305 -0.249 0.140 -0.576 | -0.308 | -0.357 | -0.368 | 0.230
PLATO[MI] 0.694 0.690 0.697 0.701 0.719 0.691 0.686 0.623 0.574 0.523 0.561 0.667
PLATO[PCA] | 0.689 0.682 0.689 0.710 0.687 0.697 0.657 0.611 0.570 0.517 0.516 0.529
PLATOJ[IFS] 0.659 0.659 0.671 0.643 0.646 0.689 0.583 0.54 0.521 0.515 0.486 0.453
TABLE VI

PAIRED t-TEST COMPARISONS OF PLATO VERSUS BASELINE

Comparison Mean 99% Cl, 99% Cl, P-Value
Difference lower upper
(PLATO - BAS)
AL QAEDA, PCA 0.759 0.637 0.881 1.08E-16
AL QAEDA, MI 0.681 0.546 0.817 2.56E-14
ISIS, PCA 0.666 0.546 0.786 2.07E-15
ISIS, MI 0.664 0.515 0.813 5.48E-13

than PLATOJIFS] (one to two days versus two to three
weeks). To compare PLATO with the baseline in an unbi-
ased manner, we implemented two-tailed paired Students ¢-
tests and found that PLATO has significantly higher Pearson
coefficients than the baseline across groups, temporal offsets,
and feature-selection methods (all mean differences >0 and
P < 1.0e — 12, see Table VI).

A. Statistical Analysis

In this section, we provide an analysis showing that PLATO
identifies features that are important for prediction. For both
PLATO[PCA] and PLATO[MI] and for each temporal offset
x € [0,5], we selected the 20 most relevant features by
counting the number of times they were selected across all
training windows and ranked them from 1 to 20. That is,
every time a feature was selected as being a relevant feature
in a training window, we increased the count of that feature.
Hence, for each dataset (either AQ or ISIS) and for each
feature selection approach (either PCA or MI), we obtained
six lists of most relevant features (one for each value of x).
A total of 24 lists of features was, thus, obtained, each
consisting of 20 features. We then introduced the notion of
rank and occurrence to measure the frequency of a given
feature with respect to the different values of the temporal
offset x. In particular, rank is the average of the six individual
ranks obtained for each value of x, while occurrence is the
percentage of times that a given feature occurs over the
different temporal offsets (e.g., a feature has occurrence equal
to 100% if it is in the list of the top-20 features for each value
of x).

Table VII reports the rank and occurrence of the top features
with respect to the two datasets for PLATO[PCA]. It turned
out that, in the case of PLATO[PCA], for all values of x, all
the top ranked features rely on one SCC, regardless of the
dataset used. Moreover, Table VII shows that most of these
features involve the category operational, followed by
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TABLE VII
OCCURRENCE (OCC.) AND RANK OF THE TOP-FEATURES USED BY PLATO[PCA]

leadership. In fact, both datasets share the same top-four
features—to ensure readability, the ranks of first-, second-,
third-, and fourth-ranked features are highlighted in green,
yellow, orange, and red, respectively—and, since these features
involve the category operational and occurrence is 100%,
it means that operational is used for all values of the
temporal offset x.

1) Macrofeatures: In the case of PLATO[MI], the “top”
features look very heterogeneous. But, if we disregard the
time lag, the “top” features become more homogeneous, which
suggests that the same features are in play, but at different
time lags. Therefore, to analyze the features selected by
PLATO[MI], which according to Table V performs better than
the other approaches, we grouped the most relevant features
into macrofeatures. Two features were considered to be in
the same group if they only differ in the time lag or if they
only distinguish between features using different properties
of nodes (e.g., alive and jail). Specifically, let ¢" (¢, f) be a
feature evaluated on the network N; restricted to the functional
category f and to the nodes, such that property 7 is true
(where 7 € {alive, jail, free}). Let W* (¢, f, t) be the 7-lagged
variant of a ¢” (¢, f); the lagged variant uses the information
provided by the network A;_.; i.e., its value is equal to
¢"(t — 7, f). We, thus, collapsed all time-lagged features
Y7 (t, f, 1), for T € {1,2,3} and 7= € {alive, jail, free}, of a
given feature into a single macrofeature ®(z, f). We obtain
66 macrofeatures for AQ and ISIS using PLATO[MI]. The
original features from which a macrofeature is obtained are
said to be compatible with the macrofeature [e.g., ¢” (¢, f) is
compatible with @ (¢, f)].

Given a dataset and the six lists of top-20 features (one for
each value of x) for that dataset, we measure the importance
of macrofeatures as follows. For each macrofeature mf and

Al Qaeda ISIS Al Qaeda ISIS

Features Rank | Occ. || Rank | Occ. Features Rank | Occ. || Rank [ Occ
F1: 1-SCCs for networks restricted to cate- 100% 100% F15: 2-time-points lagged feature value of F3 | 20 33% - -
gory operational F16: 3-time-points lagged feature value of F4 5 100% 17.2 | 100%
F2: 1.CCs for networks restricted to cate- | 15:5) 100% ] 6| 100% F17: 2-time-points lagged feature value of F4 | 6.5 | 100% || 103 | 100%
gory leadership

- F18: 1-time-point lagged feature value of F4 9.5 100% 10.8 | 100%
F3: 1-SCCs for networks restricted to cate- - - - -
gory logistical F19: 3-time-points lagged feature value of F5 | 8.7 100% - -
F4: 1-SCCs for alive members of networks | 9.3 | 100% || 11.8 | 100% F20: 2-time-points lagged feature value of F5 | 6.3 | 100% || 16.6 | 83%
restricted to category operational F21: 1-time-point lagged feature value of F5 11 100% || 153 | 67%
F5: 1-SCCs for not jailed members of net- - - - - F22: 3-time-points lagged feature value of F6 19 33% 16 83%
works restricted to category operational - -

F23: 2-time-points lagged feature value of F6 - - 18 50%

F6: 1-SCCs for not jailed members of net- 18 33% 19 17% - -
works restricted to category leadership F24: 3-time-points lagged feature value of F7 19 17% 13.5 83%
F7: 1-SCCs for alive members of networks _ _ _ _ F25: 2-time-points lagged feature value of F7 - - 18.7 100%
restricted to category leadership F26: 1-time-point lagged feature value of F7 - - 19 17%
F8: 3-time-points lagged feature value of F1 100% 100% F27: 3-time-points lagged average value of F1 | 20 33% 15 33%
F9: 2-time-points lagged feature value of F1 100% 100% F28: 2-time-points lagged average value of F1 16 67% 13.8 | 83%
F10: 1-time-points lagged feature value of F1 100% || 2.3 100% F29: 1-time-point lagged average value of F1 12 67% 85 | 100%
F11: 3-time-points lagged feature value of F2 | 15.3 | 100% 5.3 100% F30: 1-time-point lagged average value of F2 - - 18 83%
F12: 2-time-points lagged feature value of F2 | 14.8 | 100% 7.2 100% F31: 1-time-point lagged average value of F4 | 19.3 67% - -
F13: 1-time-point lagged feature value of F2 | 17.5 | 100% 8.5 100% F32: 1-time-point lagged average value of F5 19 17% - -
F14: 3-time-points lagged feature value of F3 16 33% - -

rank r € [1, 20], let mf(r) be the percentage of lists out of six
in which mf is compatible with a top-/ feature in the list, with
h < r. This means that if a macrofeature mf is compatible with
every top-1 feature in all the lists of most relevant features for
a dataset, then mf(r) = 100% for each r € [1, 20]. Then, the
importance of mf is given by the integral of mf(r) between
r = 1 and r = 20, that is, the area under the cumulative
percentage mf(r).

Table VIII reports the top-ten highest ranked macrofeatures
for AQ and ISIS, respectively. For each dataset, they are
ranked from the most important to the least important. Due
to space constraints, we report the complete list of the
highest-ranked macrofeatures in the Supplemental Material.
The subnetworks of AQ involved in logistical support and
PCs are consistently among the most predictive macrofeatures.
As with the PLATO[PCA] results, the leadership and opera-
tional subnetworks are most important for predicting future
ISIS violence. Moreover, in the case of AQ, the average
degrees of nodes in various subnetworks are strongly linked
with lethality, as are properties associated with the diameters
of the SCCs, as well as other centrality measures. This is also
mirrored in the case of ISIS where degrees and diameters of
strongly connected subnetworks play an important role.

Due to space limitations, additional analytic results we
performed are reported in the Supplemental Material.

B. Density Prediction and Ensemble Extension

As different networks can last for different time periods, it is
of interest to predict the density of attacks, i.e., the number
of attacks per month when the network is valid. Predicting
density is complementary to predicting the number of attacks
and is of interest to analysts who cannot estimate the duration
of a network. We used PLATO to predict the number of attacks
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TABLE VIII
MACROFEATURES FOR PLATO[MI] FOR AQ (LEFT) AND ISIS (RIGHT) RANKED BY IMPORTANCE

AL QAEDA ISIS
1 Average 1-SCC Diameter for networks restricted to category logistical Group PageRank for networks restricted to functional category leadership
2 Functional Sub-network Density for networks restricted to Logistical Functional Sub-network Density for networks restricted to leadership
3 Functional In-Degree for networks restricted to functional category PC 1-Strongly Connected Components for networks restricted to leadership
4 Functional In-Degree for networks restricted to category financial Complementary Functional In-Degree for networks restricted to leadership
5 Functional In-Degree for networks restricted to category logistical Functional Out-Degree for networks restricted to category leadership
6 Functional Out-Degree for networks restricted to functional category PC Complementary Functional Out-Degree for networks restricted to leadership
7 Group Betweenness Centrality for networks restricted to category logistical 1-Strongly Connected Components for networks restricted to operational
8 Average 1-SCC Diameter for networks restricted to functional category PC Functional In-Degree for networks restricted to category leadership
9 Standard Deviation SCC Diameters for networks restricted to category PC Functional In-Degree for networks restricted to category operational
10 | Group Betweenness Centrality for networks restricted to category PC Normalized Category Rank for networks restricted to category leadership

TABLE IX
BEST PCC SCORES FOR PLATO PREDICTING DENSITY AND FOR PLATO WITH GCN IN THE ENSEMBLE

AL QAEDA ISIS

z=0|z=1|2z=2 |2z=3 | z=4 | z=5 x:O‘x:l‘x:Q‘x:3‘x:4‘x:5
Density prediction PLATO[MI] 0.738 0.730 0.730 | 0.745 0.726 0.732
(standard ensemble) PLATO[PCA] | 0.743 0.749 0.716 | 0.734 0.712 0.704 . - L . .

Density prediction coincides with attack prediction.

Density prediction PLATO[MI] 0.743 0.731 0.736 | 0.745 0.726 0.740
(ensemble with GCN) PLATO[PCA] | 0.743 | 0.749 | 0.716 | 0.734 | 0.720 | 0.704
Number of attacks PLATO[MI] 0.707 0.716 0.701 0.701 0.719 0.702 0.692 0.623 0.608 0.540 | 0.561 0.667
(ensemble with GCN) PLATO[PCA] | 0.689 0.682 0.689 0.710 0.687 0.697 0.661 0.614 | 0.573 0.546 0.522 0.531

per month, as time intervals of our networks are multiple
of one month. This makes no difference for the prediction
for ISIS, as the duration of each network in ISIS is about
one month. For AQ, the PCC scores of the PLATO[MI] and
PLATO[PCA] variant predicting the density are shown in
the third and fourth rows of Table IX, respectively. Density
predictions by PLATO are more accurate, improving the PCC
scores of 3.4% and 4.1% on average as opposed to predicting
the raw number of attacks (see Table VI).

Finally, we analyzed the impact of augmenting the PLATO
ensemble (consisting of six regression models) with a graph
convolution network (GCN) approach [14] appropriate for
our network-based data. Although using advanced GCNs can
avoid using application-specific features, the results shown in
Table IX (rows from fifth to eighth) show that adding GCN
to the ensemble leads to a very small improvement that is
not statistically significant (all paired Students ¢-tests give
p-values > 0.13 with 95% CI) for both ISIS and AQ for
attacks or density prediction.

V. LIMITATIONS AND FUTURE WORK

While our AQ and ISIS data are among the first longitudinal
datasets on these terror groups, we (like most researchers)
are limited, because much data on these groups are classified.
Though strong efforts were made to harmonize differences in
the data collected by different coders, we do make assumptions
on some missing data as detailed in Section II. Measuring
lethality as the number of attacks as we have done is valid, but
also a limitation. Measuring it via other metrics (e.g., number
of casualties and economic damage) offers possible avenues
for future work.

Finally, embedding lethality computations into algorithms
for reshaping terror networks need to be studied further. Past
work suffered from being unable to measure the dependent
variable, i.e., efficacy of reshaping efforts [1], [2]. These
efforts may also be aided by parallel studies on how to shape
corporate board networks where data (e.g., when a person
joined or left a board) are more readily available and where
related dependent variables (e.g., share price) are also publicly
available.

VI. CONCLUSION

Our work contributes to the growing body of research
on forecasting political violence [15], [16], [17], [18]. Our
model, based on network features within terror groups, adds
to the existing research, which has found that including
network information about violent groups improves predictive
performance [19], [20]. We extend these efforts by leveraging
novel data about not only the nodes and edges within AQ
and ISISnetworks, but also node attributes (e.g., the rank and
role of individuals) and category types (e.g., logistical and
operational). Our ability to accurately predict the lethality of
AQ and ISIS suggests that there may be future gains to be
made by collecting and leveraging data on such networks.

Additional results (included in the Supplemental Material)
also suggest potential policy implications. For the top-ranked
features for PLATO[MI] we assessed the relationship between
the number of attacks via bivariate Poisson regression account-
ing for the robust variance and multiple hypothesis testing
(through the Bonferroni correction). For AQ, we find that
the coefficient for the features related to the average degree
of the PC subnetworks is generally statistically significant
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and positive. Put another way, AQ’s PCs network becoming
more connected is associated with AQ carrying out more
violence. This might explain why previous work does not find
an association between propaganda output and the number of
attacks carried out [21]. Previous works have not considered
the impact of the members of the PCs network, so it is possi-
ble scholars have overlooked important factors. For instance,
it may be that changes in the connections between the mem-
bers responsible for propaganda influences group effective-
ness, possibly having a lagged impact. However, more work
is needed to more fully assess the causality of this relationship.

APPENDIX A
DEFINITIONS OF FEATURES
We first provide the definitions of the basic features listed in
Tables I-IV and then discuss, in more detail, the time-lagged
features. Recall that N, = (V,, E,, m;, cat,) denotes a network
existing during the time interval ;.

A. Weighted-Based Features
The first class of features provides insights about the frac-
tion of people at time # belonging to the subnetwork associated
with a specific functional category f (e.g., operational).
Definition 1 (Functional Category Fraction):

Holv eV, fecay()}|
Vil '

Next, we define two classes of features, which are parame-
trized by a weight function W : V — N. For instance, we may
choose W (v) to be the vertex rank by defining W (v) equal to
7 (v, rank) for each v € V.

The first family of features consists of the average of the
weights W (v) of people v in category f in the network M.

Definition 2 (Average Category Weight):

ZU\UEV,, fecat, (v) W(D)
{olv eV, fecat@®)}|

The second class of features is the sum of the weights W (v)
of people in category f divided by the sum of the weights of
all people in the network at time ¢.

Definition 3 (Normalized Category Weight):

Zu\uev,, fecat (v) W(D)
ZD\DEV, W(U)

Thus, if function W returns the rank, i.e., W is the function
r(v) = = (v, rank), we obtain @5 (¢, f), which is the average
rank of people in category f in the network N;. Likewise,
@5 (¢, f) is the sum of the rank of people in category f divided
by the sum of the ranks of all people in M.

The next two features are obtained by doing the same as
mentioned earlier with PageRank [22] instead of rank. Let
PR(v) be the PageRank of vertex v. Then, ¢5R(z, f) is the
average PageRank of people in category f in the network at
time 7, while g¥R(z, f) is the sum of the PageRanks of people
in category f divided by the sum of the PageRanks of all
people in the network at time ¢.

Similarly, we define ¢5(z, f) and ¢5 (¢, f) where the weight
function g(v) = PR(v) - r(v) is used.

$it, f) =

¢ (1, f) =

oYt f) =
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In summary, using ¢y’ (¢, f) and @3 (¢, f), we defined six
features, three for each group, where the weight function W (-)
is one of the following: rank r(-), PageRank PR(-), and the
product g(-) of rank and PageRank.

B. Features Based on Restrictions of the Network (RbF)

We use the concept of restriction of a network with respect
to a functional category to define features. The restriction
of N with respect to f € C, denoted as N;[f], is the
subnetwork induced by the nodes whose functional categories
include f; functions 7 and cat are then restricted to nodes
in AGLf1.

We start by defining features measuring the diameter of
our networks at different time points, possibly restricting the
network to some features. However, the diameter of a graph
is infinite if it is not strongly connected, and this may happen
for the kinds of networks we are dealing with. Thus, to define
features returning finite values, we will consider SCCs of
different sizes.

Given a network N, we use SCC(N) to denote the set
of SCCs in V. Moreover, we use SCC(N, k) to denote the
set of SCCs of size k (i.e., containing k vertices). Given
N = (V, E, r,cat), we say that N is strongly connected if
SCCWV, |V]) is N itself.

Definition 4 (k-SCCs):

¢alt, fh) = D [SCCWILf1,K)].

K elk, IV LAl

Feature ¢4(¢, f, k) is the number of SCCs of N,[f] of
size greater than or equal to k. In the following, we use
kmax to denote the size of the largest SCCs of A;[f]. Thus,
dult, f, k) > 0 for k < kmax; O otherwise. Moreover, if kyax =
[V:[f1l, then ¢4(t, f, k) = 1—the unique largest connected
component is N[ f] itself.

Let da(u,v) be the shortest distance (i.e., number of
edge hops) between vertices u and v in a network N. The
diameter of N = (V,E,rm,cat) is defined as D(N) =
max, yev dar(u, v); it is infinite if A is not strongly connected.

Definition 5 (Average k-SCC Diameter):

¢s(t, f,k) = avg{|D(N)| s.t. N € SCCWN[f], k)}.

Feature ¢s(t, f, k) is the average diameter of the SCCs of
N:[f] having size k. It is worth noting that if A/ is strongly
connected, then ¢s(z, f, |V|) coincides with the diameter of
|V|. Moreover, ¢s(t, f, k) is finite for each k lower than or
equal to the size kpyqy of the largest SCCs of N[ f].

The last family of features based on the concept of diameter
considers the standard deviation ¢ of the diameters of SCCs
for the network N[ f]:

Definition 6 (Standard Deviation SCC Diameters):

Po(t, [) = o lgs(t, k) | k < kmax}.

The next family of features considers the density, instead
of the diameter. Feature ¢;(z, f) is the density of N;[f].
Definition 7 (Functional Subnetwork Density):
{(u,0)| (u,l,0) € E[f]}|
\avals '

$1(t, f) =
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The next family of features, ¢g(t, f), represents the prob-
ability that a random vertex » in N;[f] is internally bicon-
nected; i.e., it is involved in a triangle with two neighbors
u’' and u” in N[ f], which are connected to other vertices in
N[ f]. We use IB to denote the set of vertices in N[ f] that
are internally biconnected.

Definition 8 (Internally Biconnected Fraction):

H{o v € V,[f] and v € IB|
\aval '

Similarly, feature ¢ (7, f) will represent the probability that
a random vertex v in N[ f] forms a pentagon involving two
neighbors u and u’ outside NV;[f] (i.e., u and u’ belong to
N:{C \ f}], the restriction of the network to the functional
categories different from f). More formally, given N/ =
(V,E,m,cat) and N[f] = (VIf], E[f],=[f],catlf]), we
say that o € N[f] is externally biconnected with respect to
N[ f]if the set of edges of the whole network N contains the
edges (v,u’), (v,u”), (W', w"), ", w"), and (w’, w"), where
all the vertices are distinct and both u’ and u” belongs to
V \ V[f]. We use EB to denote the set of vertices in N[ f]
that are externally biconnected.

Definition 9 (Externally Biconnected Fraction):

{o|v € V;[f] and v € EB|
[Vi[/1I '

The features defined earlier rely on restricting the network
to functional categories. More specific kinds of restriction are
considered in the following.

We define ¢; (¢, f) with i € {4,...,9} as the ver-
sions of ¢;(z, f), where we use the restriction of net-
work N to the vertices v, such that 7 (v, alive) = true
and 7 (v, jail) = false; that is, we only focus on peo-
ple who are alive and not in jail. That is, given N =
(V,E,m,cat), features ¢; ' (t, f) are defined using the net-
work NTf,ajl = (VLf,ajl, ELf,ajl, z[f,ajl, catl f, ajl)
instead of NT[f], where V[f,aj] = {v|lv € V, [ €
cat;(v) w (v, alive) = true, 7 (v,jail) = false}, E[f] =
(VIf,ajlxLxV[f,aj)NE, and 7 [f, aj] and cat[ f, aj] are
the restrictions of functions 7 and cat to the domain V[ f, aj].

Likewise, we define features focusing only on people who
are alive and use ¢¢ (¢, f) with i € {4, ..., 9} to denote them,
which are versions of ¢; (¢, f), where we use the restriction
of network A to the vertices v, such that 7 (v, alive) = true.

Let degif\‘[(v) and deg}f(v) be the in- and out-degrees
of vertex v with respect to network N, respectively. The
following two features represent the average in- and out-
degrees (calculated considering the edges of A at time ) of
vertices belonging to the restriction of network A with respect
to f at time ¢, respectively.

Definition 10 (Functional In-Degree):

Ps(t, ) =

Po(t, f) =

Pio(t, ) = ave{degh; (v) | v € Vi[f1}.

Definition 11 (Functional Out-Degree):

P11, f) = avg{deght (v) | v € Vi[f1}.

In contrast to the two features defined earlier, the following
features consider the restriction of the network to all the
functional categories except that given in input.

Definition 12 (Complementary Functional In-Degree):

P1a(t, f) = avg{degh, (v) | v € VIIC\ {f}1}.

Definition 13 (Complementary Functional Out-Degree):
$13(1, f) = avg{degdf (v) | v € VIC\ {f}]}.

C. Group-Based Features

Given N; = (V,, E,,m;,cat;) and a set S of vertices
(e.g., the set V;[f] of vertices whose set of functional cat-
egories includes f), we define the GPR of a set of nodes as
follows:

1-9) GPR
GPR(S) = % s dofi{u})
Vi (u,l,0)€E,, CeN, (u)
ueV\S,
veS

where degi{ (1) is the out-degree of vertex u in \;, and ¢ is a

damping factor as in the original definition of PageRank [22].
Note that the GPR of a singleton {v} coincides with the
PageRank of v itself, that is, GPR({v}) = PR(v).

The definition of GPR allows us to define a family of feature
for NV; that depends on the choice of the set S. Specifically,
we define feature ¢14(¢, f) as the GPR of the set of vertices
whose functional category is f.

Definition 14 (GPR): ¢14(t, f) = GPR(V,[f]).

We define another family of features using the GBC [9] of
a given set S as follows. GBC(S) is the sum of the fractions
of all shortest paths, which traverse at least one node in S,
and, thus, represents the probability that a randomly selected
shortest path between two randomly selected vertices in V;
contains a node in S. For instance, if S is the set of vertices
belonging to category f in the network at time 7, then we
obtain the following feature.

Definition 15 (GBC):

$15(t, f) = GBC(V/[f]).

This feature represents the probability that a randomly
selected shortest path between two randomly selected vertices
in V; traverse a vertex whose functional category is f.

We can define several variants of ¢4 and ¢;5 depending on
the choice of S. Also, we can aggregate the values of GPRs
and GBCs for different sets to obtain new features as follows.

Given a network N; = (V,, E;, r;) and a functional category
f € C, we use Pz’:f to denote be the set of the vertices
of N, involved in the functional category f and with rank
greater than or equal to r, that is, Pt’:f =fvloveV, fe€
cat;(v), m,(v,rank) > r}. For instance, assuming that the
maximum rank is 10, PZI(?IO,operational is the set the top-ranked
operational persons in 2010.

For a subset F = {fi,..
categories, let R/ (F) = P/ foX P X

., fi;r;i} € C of functional

X Ptr,ﬁﬂ be
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the Cartesian product of the sets of r-ranked people from
the functional categories in JF at time ¢. Therefore, after
appropriately choosing the value of r, R)(F) consists of all
possible |F|-tuples of highly ranked persons, one for each
functional category in F. For each tuple v € RJ(F), let
S: = {p1,... > D17 | 7 = (p1, ey p‘]:|)} be the set of the
| F| people in 7.

The next features are the average of GPRs and GBCs of all
combinations of people at rank r or more for categories in F.

Definition 16 (Functional Rank GPR):

$16(t, F,r) = avg{GPR(S,) | = € R/ (F)}.
Definition 17 (Functional Rank GBC):
$17(t, F,r) = avg{GBC(S;) | r € R/(F)}.

D. Clustering-Based Features

Given a path of length two in a network, we call a triplet
the set of the three vertices in the path. A triplet is said to
be open if the three vertices are connected by exactly two
edges, while it is said to be closed if it consists of three
edges—a closed triplet corresponds to a path of length 2 that
is closed. Thus, a triangle consists of three closed triplets,
corresponding to three closed path of length two, each starting
on one of the vertices. The clustering coefficient is then defined
as the number of closed triplets (i.e., three times the number
of triangles) over the total number of triplets (both open and
closed ones). It represents the probability that two vertices that
are connected possibly through the third one are also directly
connected.

The clustering coefficient can be defined for both directed
graphs, such as our network N' = (V, E, «, cat), and undi-
rected graphs such as the undirected (and unlabeled) version
of N defined through E, the set of undirected (and unlabeled)
edges obtained from E, as N = (V, E, «, cat). Specifically,
given a (directed or undirected) graph G whose set of edges
is E, the cluster coefficient for G is as follows:

3 x [{(u,v,w) | (u,v), (v, w), and (w,u) € E}|
[{(u,v, w) | (u,v) and (v, w) € E}|
Thus, considering N; = (V,, E;, n,) and N; = (V,, E,, ,),

we define the following two features.
Definition 18 (Global Directed Clustering Coefficient):

pi1s(t, f) = CCNLfD).
Definition 19 (Global Undirected Clustering Coefficient):

Pro(t, f) = CCN,L£1D).

We now define two classes of features that rely on groups
of top-ranked people from functional categories in a set F.

Let R{(F) = P, x P/, x---x P/, be the Cartesian
product of the sets of r-ranked people from the functional
categories in F = {fi,..., fir;} € C at time ¢, and S, =
{p1,...,p‘_7.‘| | 7 = (p1,...,p|_7:‘)} be the set of the |F]|
people in 7 € RJ(F), as defined for the GbFs. Given a
network A" = (V, E, z,cat) and a set S of vertices, we use
NS] to denote the subnetwork consisting of only the vertices

CC(G) =
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and edges involving S. Thus, for z € R/(F), N[S;] is the
subnetwork (at time ¢) consisting of only the edges between a
group of r-ranked people, each having a functional category
in F. The following feature is the average of the clustering
coefficients of all groups of r-ranked people whose functional
category is in F and belonging to the network at time ¢.
Definition 20 (Average Group Functional Ranked CC):

poo(t, F,r) = avg{CCWN;[S: )| 7 € R (F) }.

Next, we consider immediate neighbors of r-ranked people
in R} (F) and define a feature representing the average of the
clustering coefficients of the neighbors of r-ranked people.
More formally, given a network N = (V, E, z) and a set S of
vertices, we use nbas(S) to denote the immediate neighbors of
Sin N, ie., nby(S) ={v | (v,l,u) or (u,l,v) € E,u € S}.
Given this, we obtain the following feature.

Definition 21 (Average Neighbor Functional Ranked CC):

$21(t, F,r) = avg{CCW[S; Unbn, (S| © € R] (F) }.

E. Time-Lagged Features

We define time-lagged variants for each feature. For each
t € T, functional category f € C, and feature ¢;, we define
time-lagged features with 7 € {1, 2, 3}.

Definition 22 (Lagged Feature Value):

Yit, f, 1) =it — 7, ).

That is, W; (¢, f, 7) is the value taken by feature ¢; at the
previous time point f — .
Definition 23 (Lagged Average Value):

Qi(t, f,r) =ave{g(t', f) | ' e[t —7,1]}.

Thus, Q;(z, f, ) is the average of the values of the last
7 + 1 single-time point features.
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